Skip to main content
Log in

Comparative hemodynamics in an aorta with bicuspid and trileaflet valves

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Bicuspid aortic valve (BAV) is a congenital heart defect that has been associated with serious aortopathies, such as aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection, calcific aortic valve and dilatation of ascending aorta. There are two main hypotheses to explain the increase prevalence of aortopathies in patients with BAV: the genetic and the hemodynamic. In this study, we seek to investigate the possible role of hemodynamic factors as causes of BAV-associated aortopathy. We employ the curvilinear immersed boundary method coupled with an efficient thin-shell finite-element formulation for tissues to carry out fluid–structure interaction simulations of a healthy trileaflet aortic valve (TAV) and a BAV placed in the same anatomic aorta. The computed results reveal major differences between the TAV and BAV flow patterns. These include: the dynamics of the aortic valve vortex ring formation and break up; the large-scale flow patterns in the ascending aorta; the shear stress magnitude, directions, and dynamics on the heart valve surfaces. The computed results are in qualitative agreement with in vivo magnetic resonance imaging data and suggest that the linkages between BAV aortopathy and hemodynamics deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roberts W.C.: The congenitally bicuspid aortic valve: a study of autopsy cases. Am. J. Cardiol. 85(85), 72–83 (1970)

    Article  Google Scholar 

  2. Fedak P.W., Verma S., David T.E., Leask R.L., Weisel R.D., Butany J.: Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106, 900–904 (2002)

    Article  Google Scholar 

  3. Sievers H.H., Schmidtke C.: A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 133, 1226–1233 (2007)

    Article  Google Scholar 

  4. Ward C.: Clinical significance of the bicuspid aortic valve. Heart 83, 81–85 (2000)

    Article  Google Scholar 

  5. Girdauskas E., Borger M.A., Secknus M.A., Girdauskas G., Kuntze T.: Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? a critical reappraisal of a one-sided argument. Eur. J. Cardiothorac. Surg. 39, 809–814 (2011)

    Article  Google Scholar 

  6. Kari F.A., Fazel S.S., Mitchell R.S., Fischbein M.P., Miller D.C.: Bicuspid aortic valve configuration and aortopathy pattern might represent different pathophysiologic substrates. J. Thorac. Cardiovasc. Surg. 144, 516–517 (2012)

    Article  Google Scholar 

  7. Robicsek F., Thubrikar M.J., Cook J.W., Fowler B.: The congenitally bicuspid aortic valve: How does it function? Why does it fail?. Ann. Thorac. Surg. 77, 177–185 (2004)

    Article  Google Scholar 

  8. Bonow R.O.: Bicuspid aortic valves and dilated aortas: a critical review of the critical review of the ACC/AHA practice guidelines recommendations. Am. J. Cardiol. 102, 111–114 (2008)

    Article  Google Scholar 

  9. Barker A.J., Markl M., Bürk J., Lorenz R., Bock J., Bauer S., Schulz-Menger J., von Knobelsdorff-Brenkenhoff F.: Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ. Cardiovasc. Imaging 5, 457–466 (2012)

    Article  Google Scholar 

  10. Corte A.D., Quarto C., Bancone C., Castaldo C., Di Meglio F., Nurzynska D., De Santo L.S., Feo M., Scardone M., Montagnani S., Cotrufo M.: Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J. Thorac. Cardiovasc. Surg. 135, 8–18 (2008)

    Article  Google Scholar 

  11. Tadros T.M., Klein M.D., Shapira O.M.: Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation 119, 880–890 (2009)

    Article  Google Scholar 

  12. Bauer M., Siniawski H., Pasic M., Schaumann B., Hetzer R.: Different hemodynamic stress of the ascending aorta wall in patients with bicuspid and tricuspid aortic valve. J. Card. Surg. 21, 218–220 (2006)

    Article  Google Scholar 

  13. Hope M.D., Hope T.A., Meadows A.K., Ordovas K.G., Urbania T.H., Alley M.T., Higgins C.B.: Bicuspid aortic valve: four-dimensional mr evaluation of ascending aortic systolic flow patterns. Radiology 255, 53–61 (2010)

    Article  Google Scholar 

  14. Sievers H.H., Sievers H.L.: Aortopathy in bicuspid aortic valve disease genes or hemodynamics? or Scylla and Charybdis?. Editor. Eur. J. Cardiothorac. Surg. 39, 803–804 (2011)

    Article  Google Scholar 

  15. Padang R., Bannon P.G., Jeremy R., Richmond D.R., Semsarian C., Vallely M., Wilson M., Yan T.D.: The genetic and molecular basis of bicuspid aortic valve associated thoracic aortopathy: a link to phenotype heterogeneity. Ann. Cardiothorac. Surg. 2, 83–91 (2013)

    Google Scholar 

  16. Mordi I., Tzemos N.: Bicuspid aortic valve disease: a comprehensive review. Cardiol. Res. Pract. 2012, 1–7 (2012)

    Article  Google Scholar 

  17. Bissell M.M., Hess A.T., Biasiolli L., Glaze S.J., Loudon M., Pitcher A., Davis A., Prendergast B., Markl M., Barker A.J., Neubauer S., Myerson S.G.: Aortic dilation in bicuspid aortic valve disease flow pattern is a major contributor and differs with valve fusion type. Circ. Cardiovasc. Imaging 6, 499–507 (2013)

    Article  Google Scholar 

  18. Nathan D.P., Xu C., Plappert T. et al.: Increased ascending aortic wall stress in patients with bicuspid aortic valves. Ann. Thorac. Surg. 92, 1384–1389 (2011)

    Article  Google Scholar 

  19. De Hart J., Peters G.W.M., Schreurs P.J.G., Baaijens FPT.: A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech. 36(1), 103–112 (2003)

    Article  Google Scholar 

  20. Einstein D.R., Kunzelman K.S., Reinhall P.G., Nicosia M.A., Cochran R.P.: Non-linear fluid-coupled computational model of the mitral valve. J. Heart Valve Dis. 14, 376–385 (2005)

    Google Scholar 

  21. Weinberg E.J., Mofrad M.R.K.: A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J. Biomech. 41, 3482–3487 (2008)

    Article  Google Scholar 

  22. Sotiropoulos F., Yang X.: Immersed boundary methods for simulating fluid–structure interaction. Prog. Aerosp. Sci. 65, 1–21 (2014)

    Article  Google Scholar 

  23. Borazjani I.: Fluid–structure interaction, immersed boundary – finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 257, 103–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Le T.B., Sotiropoulos F.: Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244, 41–62 (2013)

    Article  MathSciNet  Google Scholar 

  25. Chandra S., Rajamannan N.M., Sucosky P.: Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech. Model. Mechanobiol. 11, 1085–1096 (2012)

    Article  Google Scholar 

  26. Jermihov P.N., Jia L., Sacks M.S., Gorman R.C., Gorman J.H. III, Chandran K.B.: Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc. Eng. Technol. 2, 48–56 (2011)

    Article  Google Scholar 

  27. Ge L., Sotiropoulos F.: A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225(2), 1782–1809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stolarski H., Gilmanov A., Sotiropoulos F.: Non-linear rotation-free 3-node shell finite-element formulation. Int. J. Numer. Methods Eng. 2013(95), 740–770 (2013)

    Article  MathSciNet  Google Scholar 

  29. Braverman A.C., Güven H., Beardslee M.A., Makan M., Kates A.M., Moon M.R.: The bicuspid aortic valve. Curr. Probl. Cardiol. 30, 470–522 (2005)

    Article  Google Scholar 

  30. Gilmanov A., Sotiropoulos F.: A hybrid cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comput. Phys. 207(2), 457 (2005)

    Article  MATH  Google Scholar 

  31. Borazjani I., Ge L., Sotiropoulos F.: Curvilinear immersed boundary method for simulating fluid–structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Felippa C.A., Park K.C., Farhat C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190(24–25), 3247–3270 (2001)

    Article  MATH  Google Scholar 

  33. Fernandez M.A., Gerbeau J.-F., Grandmont C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Methods Eng. 69, 794–821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Küttler U., Wall W.: Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech. 43, 61–72 (2008)

    Article  MATH  Google Scholar 

  35. Gilmanov, A., Le, T.B., Sotiropoulos, F: A numerical approach for simulating fluid structure interaction of flexible thin 481 shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys. 300, 814–843 (2015)

  36. Carmody C.J., Burriesci G., Howard I.C., Patterson E.A.: An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39, 158–169 (2006)

    Article  Google Scholar 

  37. Liu J.S., Lu P.C., Chu S.H.: Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122, 118–124 (2000)

    Article  Google Scholar 

  38. Loudon C., Tordesillas A.: The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191, 63–78 (1998)

    Article  Google Scholar 

  39. Beppu S., Suzuki S., Matsuda H., Ohmori F., Nagata S., Miyatake K.: Rapidity of progression of aortic stenosis in patients with congenital bicuspid aortic valves. Am. J. Cardiol. 71, 322–327 (1993)

    Article  Google Scholar 

  40. Garcia D., Kadem L.: What do you mean by aortic valve area: Geometric orifice area, effective orifice area, or gorlin area?. J. Heart Valve Dis. 15, 601–608 (2005)

    Google Scholar 

  41. Baumgartner H., Hung J., Bermejo J., Chambers J.B., Evangelista A., Griffin B.P., Iung B., Otto C.M., Pellikka P.A., Quinõnes M.: Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur. J. Echocardiogr. 10, 1–25 (2009)

    Article  Google Scholar 

  42. Otto C.M., Lind B.K., Kitzman D.W., Gersh B.J., Siscovick D.S.: Association of aortic valve sclerosis with cardiovascular mortality and morbidity in the elderly. N. Engl. J. Med. 341, 142–147 (1999)

    Article  Google Scholar 

  43. Cecconi M., Marnfrin M., Moraca A., Zanoli R., Colonna P.L., Bettuzzi M.G., Moretti S., Gabrielli D., Perna G.P.: Aortic dimensions in patients with bicuspid aortic valve without significant valve dysfunction. Am. J. Cardiol. 95, 292–294 (2005)

    Article  Google Scholar 

  44. Butcher J.T., Mahler G.J., Hockaday L.A.: Aortic valve disease and treatment: the need for naturally engineered solutions. Adv. Drug Deliv. Rev. 63, 242–268 (2011)

    Article  Google Scholar 

  45. Malek A., Alper S., Izumo S.: Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc. 282, 2035–2042 (1999)

    Article  Google Scholar 

  46. Ge, L., Sotiropoulos, F.: Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: Is there a link with valve calcification?. J. Biomech. Eng. 132, 014505.1–014505.5 (2010)

  47. He X, Ku D.N.: Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118, 74–82 (1996)

    Article  Google Scholar 

  48. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, Streams, and Convergence Zones in Turbulent Flows. In: Proceedings of 1988 Summer Program, Stanford N.A.S.A. Centre for Turbulence Research, CTR-S88, vol. 736, pp. 193–208 (1988)

  49. Bissell M.M., Dall’Armellina E., Choudhury R.P.: Flow vortices in the aortic root: in vivo 4D-MRI confirms predictions of leonardo da vinci. Eur. Heart J. 35, 1344 (2014)

    Article  Google Scholar 

  50. Mahadevia R., Barker A.J., Schnell S., Entezari P., Kansal P., Fedak P.W.M., Malaisrie S.C., McCarthy P., Collins J., Carr J., Markl M.: Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129, 673–682 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotis Sotiropoulos.

Additional information

Communicated by Jeff D. Eldredge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilmanov, A., Sotiropoulos, F. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theor. Comput. Fluid Dyn. 30, 67–85 (2016). https://doi.org/10.1007/s00162-015-0364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0364-7

Keywords

Navigation