Skip to main content
Log in

Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The instability mechanism of fully three-dimensional, highly separated, shear-driven confined flow inside a diagonally lid-driven cavity was investigated. The analysis was conducted on 1003 and 2003 stretched grids by a series of direct numerical simulations utilizing a standard second-order accuracy finite volume code, openFoam. The observed oscillatory instability was found to set in via a subcritical symmetry breaking Hopf bifurcation. Critical values of the Reynolds number Re cr = 2320 and the non-dimensional angular oscillating frequency \({\omega_{\rm cr}=0.249}\) for the transition from steady to oscillatory flow were accurately determined. An oscillatory regime of the bifurcated flow was analyzed in depth, revealing and characterizing the spontaneous symmetry breaking mechanism. Characteristic spatial patterns of the base flow and the main flow harmonic were determined for the velocity, vorticity and helicity fields. Lagrangian particle tracers were utilized to visualize the mixing phenomenon of the flow from both sides of the diagonal symmetry plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Batchelor G.K.: On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177–190 (1956)

    Article  MathSciNet  Google Scholar 

  2. Moffatt H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18 (1963)

    Article  Google Scholar 

  3. Kawaguti M.: Numerical solution of the Navier-Stokes equations for the flow in a two-dimensional cavity. J. Phys. Soc. Jpn. 16, 2307–2315 (1961)

    Article  MathSciNet  Google Scholar 

  4. Simuni L.M.: Numerical solution of the problem of the motion of a fluid in a rectangular hole. J. Appl. Mech. Tech. Phys. 6, 106–108 (1965)

    Article  Google Scholar 

  5. Shankar P.N., Deshpande M.: Mechanics in the driven cavity. Ann. Rev. Fluid Mech. 32, 93–136 (2000)

    Article  MathSciNet  Google Scholar 

  6. Ertuck G.: Discussions on driven cavity flow. Int. J. Numer. Methods Fluids 60, 275–294 (2009)

    Article  Google Scholar 

  7. Boppana G., Gajjar J.: Global flow instability in a lid-driven cavity. Int. J. Numer. Methods Fluids 62, 827–853 (2010)

    MathSciNet  Google Scholar 

  8. Ramanan N., Homsy G.M.: Linear stability of lid-driven cavity flow. Phys. Fluids 6, 2690–2701 (1994)

    Article  Google Scholar 

  9. Theofilis, V.: AIAA/CEAS Aeroacoust. Conf. Exhib., 6th, Lahaina, AIAA Paper, pp. 1965–2000 (2000)

  10. Ding Y., Kawahara M.: Linear stability of incompressible flow using a mixed finite element method. J. Comput. Phys. 139, 243–273 (1998)

    Article  MathSciNet  Google Scholar 

  11. Albensoeder S., Kuhlmann H.: Three-dimensional centrifugal-flow instabilities in the lid-driven cavity problem. Phys. Fluids 13, 121–136 (2001)

    Article  Google Scholar 

  12. Feldman Y., Gelfgat A.Y.: Oscillatory instability of a three-dimensional lid-driven flow in a cube. Phys. Fluids 22(9), 093602 (2010)

    Article  Google Scholar 

  13. Liberzon A., Feldman Y., Gelfgat A.Y.: Experimental observation of the steady-oscillatory transition in a cubic lid-driven cavity. Phys. Fluids 23(8), 084106 (2011)

    Article  Google Scholar 

  14. Kuhlmann H., Albensoeder S.: Stability of the steady three-dimensional lid-driven flow in a cube and the supercritical flow dynamics. Phys. Fluids 26, 024104 (2014)

    Article  Google Scholar 

  15. Natrajam R., Acrivos A.: The instability of the steady flow past spheres and disks. J. Fluid Mech. 254, 323–344 (1993)

    Article  Google Scholar 

  16. Erikson L., Rizzi A.: Computer-aided analysis of the convergence to steady state of discrete approximations to the Euler equations. J. Comput. Phys. 57(1), 90–128 (1985)

    Article  MathSciNet  Google Scholar 

  17. Gelfgat A.Y.: Stability of convective flows in cavities: solution of benchmark problems by a low-order finite volume method. Int. J. Numer. Methods Fluids 53(3), 485–506 (2007)

    Article  MathSciNet  Google Scholar 

  18. Tuckerman L., Barkley D.: Bifurcation Analysis for Timesteppers. Springer, New York (1999)

    Google Scholar 

  19. Giannetti, F., Luchini, P., Marino, L.: Linear stability analysis of three-dimensional lid-driven cavity flow. In: Atti 19th Congr. AIMETA Mecc. Teor. Appl., Ancona, Italy, Art. No. 738. Aras Edizioni, Ancona, Italy (2009)

  20. Gómez F., Gómez R., Theofilis V.: On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aeros. Sci. Technol. 32(1), 223–234 (2013)

    Article  Google Scholar 

  21. Feldman Y., Gelfgat A.Y.: From multi- to single-grid CFD on massively parallel computers: numerical experiments on lid-driven flow in a cube using pressure–velocity coupled formulation. Comput. Fluids 46(1), 218–223 (2011)

    Article  MathSciNet  Google Scholar 

  22. Povitsky, A.: Three-dimensional flow in cavity at yaw. Tech. Rep. 211232, NASA/CR (2001)

  23. Povitsky, A.: High-incidence 3-D lid-driven cavity flow. AIAA Paper 2847, 2001 (2001)

  24. Povitsky A.: Three-dimensional flow in cavity at yaw. Nonlinear Anal. Theory Methods Appl. 63, e1573–e1584 (2005)

    Article  Google Scholar 

  25. Yu D., Mei R., Luo L.S., Shyy W.: Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39, 329–367 (2003)

    Article  Google Scholar 

  26. D’Humières D., Ginzburg I., Krafczyk M., Lallemand P., Luo L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. A 360, 437–451 (2012)

    Article  Google Scholar 

  27. Freitas R.K., Henze A., Meinke M., Schröder W.: Analysis of Lattice-Boltzmann methods for internal flows. Comput. Fluids 47, 115–121 (2011)

    Article  MathSciNet  Google Scholar 

  28. Asinari P., Ohwada T., Chiavazzo E., Di Rienzo A.F.: Link-wise artificial compressibility method. J. Comput. Phys. 231, 5109–5143 (2012)

    Article  MathSciNet  Google Scholar 

  29. Weller H., Tabor G., Jasak H., Fureby C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  30. Ferziger J.H., Perić M.: Computational Methods for Fluid Dynamics. Springer, New York (2002)

    Book  Google Scholar 

  31. Drazin P., Reid W.: Hydrodynamic Stability. Cambridge Mathematical Library, Cambridge (2004)

    Book  Google Scholar 

  32. Hassard, B., Kazarinoff, N., Wan, Y.H.: Theory and applications of Hopf bifurcation. Mathematics Society Lecture Note Series, vol. 41, London (1981)

  33. Kuznetsov Y.A.: Elements of Applied Bifurcation Theory, pp. 273–288. Springer, New York (1998)

    Google Scholar 

  34. Barkley D., Tuckerman L.S., Golubitsky M.: Bifurcation theory for three-dimensional flow wake of a circular cylinder. Phys. Rev. E 61(5), 5247–5252 (2000)

    Article  MathSciNet  Google Scholar 

  35. Blackburn H.M., Marques F., Lopez J.: Symmetry breaking of two-dimensional time-periodic wakes. J. Fluid Mech. 522, 395–411 (2005)

    Article  MathSciNet  Google Scholar 

  36. Theofilis V., Duck P.W., Owen J.: Viscous linear stability analysis of rectangular duct and cavity flow. J. Fluid Mech. 505, 249–286 (2005)

    Article  MathSciNet  Google Scholar 

  37. Moffatt H.K.: The degree of knottedness of tangled vortex lines. J. Fluid Mech. 18, 117–129 (1969)

    Article  Google Scholar 

  38. Moffatt H.K.: Magnetic Field Generation in Electrically Conducting Field. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  39. Moffatt H.K.: Some developments in the theory of turbulence. J. Fluid Mech. 106, 27–47 (1981)

    Article  MathSciNet  Google Scholar 

  40. Moffatt H.K., Tsinober A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281–312 (1992)

    Article  MathSciNet  Google Scholar 

  41. Kholmyansky, M., Shapiro-Orot, M., Tsinober, A.: Proc. R. Soc. Lond. Ser. A 2699–2717 (2001)

  42. Kuhlmann H., Albensoeder S.: Strained vortices in driven cavities. Z. Angew. Math. Mech. 85(6), 387–399 (2005)

    Article  MathSciNet  Google Scholar 

  43. Leweke T., Williamson C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85–119 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Feldman.

Additional information

Communicated by Tim Colonius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feldman, Y. Theoretical analysis of three-dimensional bifurcated flow inside a diagonally lid-driven cavity. Theor. Comput. Fluid Dyn. 29, 245–261 (2015). https://doi.org/10.1007/s00162-015-0351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0351-z

Keywords

Navigation