Skip to main content
Log in

Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present a new approach for the construction of stochastic subgrid scale parameterizations. Starting from a high-resolution finite-difference discretization of some model equations, the new approach is based on splitting the model variables into fast, small-scale and slow, large-scale modes by averaging the model discretization over neighboring grid cells. After that, the fast modes are eliminated by applying a stochastic mode reduction procedure. This procedure is a generalization of the mode reduction strategy proposed by Majda, Timofeyev & Vanden-Eijnden, in that it allows for oscillations in the closure assumption. The new parameterization is applied to the forced Burgers equation and is compared with a Smagorinsky-type subgrid scale closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achatz U., Branstator G.: A two-layer model with empirical linear corrections and reduced order for studies of internal climate variability. J. Atmos. Sci. 56, 3140–3160 (1999)

    Article  Google Scholar 

  2. Achatz U., Opsteegh J.D.: Primitive-equation-based low-order models with seasonal cycle. Part I: model construction. J. Atmos. Sci. 60, 465–477 (2003)

    Article  MathSciNet  Google Scholar 

  3. Achatz U., Schmitz G.: On the closure problem in the reduction of complex atmospheric models by PIPs and EOFs: a comparison for the case of a two-layer model with zonally symmetric forcing. J. Atmos. Sci. 54, 2452–2474 (1997). doi:10.1175/1520-0469(1997)054<2452:OTCPIT>2.0.CO;2

    Article  Google Scholar 

  4. Achatz U., Schmitz G., Greisiger K.M.: Principal interaction patterns in baroclinic wave life cycles. J. Atmos. Sci. 52, 3201–3213 (1995). doi:10.1175/1520-0469(1995)052<3201:PIPIBW>2.0.CO;2

    Article  Google Scholar 

  5. Branstator G., Haupt S.E.: An empirical model of barotropic atmospheric dynamics and its response to tropical forcing. J. Clim. 11, 2645–2667 (1998). doi:10.1175/1520-0442(1998)011<2645:AEMOBA>2.0.CO;2

    Article  Google Scholar 

  6. Buizza R., Miller M., Palmer T.N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125, 2887–2908 (1999). doi:10.1002/qj.49712556006

    Article  Google Scholar 

  7. Chekhlov A., Yakhot V.: Kolmogorov turbulence in a random-force-driven Burgers equation. Phys. Rev. E. 51, 2739 (1995). doi:10.1103/PhysRevE.51.R2739

    Article  MathSciNet  Google Scholar 

  8. Crommelin D., Vanden-Eijnden E.: Subgrid-scale parameterization with conditional Markov chains. J. Atmos. Sci. 65, 2661–2675 (2008). doi:10.1175/2008JAS2566.1

    Article  Google Scholar 

  9. Culina J., Kravtsov S., Monahan A.H.: Stochastic parameterization schemes for use in realistic climate models. J. Atmos. Sci. 68, 284–299 (2011). doi:10.1175/2010JAS3509.1

    Article  Google Scholar 

  10. Das A., Moser R.D.: Optimal large-eddy simulation of forced Burgers equation. Phys. Fluids 14, 4344–4351 (2002). doi:10.1063/1.1516212

    Article  MathSciNet  Google Scholar 

  11. DelSole T.: Stochastic models of quasigeostrophic turbulence. Surv. Goephys. 25, 107–149 (2004)

    Article  Google Scholar 

  12. Dolaptchiev S.I., Klein R.: Planetary geostrophic equations for the atmosphere with evolution of the barotropic flow. Dyn. Atmos. Ocean. 46, 46–61 (2009)

    Article  Google Scholar 

  13. Dolaptchiev, S.I., Timofeyev, I., Achatz U.: Subgrid-scale closure for the inviscid Burgers–Hopf equation. Commun. Math. Sci. (Submitted to)

  14. Franzke C., Majda A.J.: Low-order stochastic mode reduction for a prototype atmospheric GCM. J. Atmos. Sci. 63, 457–479 (2006)

    Article  MathSciNet  Google Scholar 

  15. Franzke C., Majda A.J., Vanden-Eijnden E.: Low-order stochastic mode reduction for a realistic barotropic model climate. J. Atmos. Sci. 62, 1722–1745 (2005)

    Article  MathSciNet  Google Scholar 

  16. Haidvogel B.: Numerical Ocean Circulation Modeling. Imperial College Press, London (1999)

    MATH  Google Scholar 

  17. Hasselmann K.: Stochastic climate models, Part I, Theory. Tellus. 28, 473 (1976)

    Article  Google Scholar 

  18. Horenko I.: On the identification of nonstationary factor models and their application to atmospheric data analysis. J. Atmos. Sci. 67, 1559–1574 (2010). doi:10.1175/2010JAS3271.1

    Article  Google Scholar 

  19. Horenko I., Dolaptchiev S.I., Eliseev A.V., Mokhov I.I., Klein R.: Metastable decomposition of high-dimensional meteorological data with gaps. J. Atmos. Sci. 65, 3479 (2008). doi:10.1175/2008JAS2754.1

    Article  Google Scholar 

  20. Horenko I., Klein R., Dolaptchiev S.I., Schütte C.: Automated generation of reduced stochastic weather models I: simultaneous dimension and model reduction for time series analysis. SIAM J. Multiscale Model. Simul. 6(4), 1125–1145 (2008)

    Article  MATH  Google Scholar 

  21. Kwasniok F.: The reduction of complex dynamical systems using principal interaction patterns. Phys. D. 92, 28–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kwasniok F.: Reduced atmospheric models using dynamically motivated basis functions. J. Atmos. Sci. 64, 3452 (2007). doi:10.1175/JAS4022.1

    Article  Google Scholar 

  23. Majda A., Klein R.: Systematic multi-scale models for the tropics. J. Atmos. Sci. 60, 393–408 (2003)

    Article  Google Scholar 

  24. Majda A., Timofeyev I., Vanden-Eijnden E.: A mathematical framework for stochastic climate models. Commun. Pure Appl. Math. 54, 891–974 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Majda A., Timofeyev I., Vanden-Eijnden E.: A priori tests of a stochastic mode reduction strategy. Phys. D. 170, 206–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Majda A.J., Khouider B.: Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. 99, 1123–1128 (2002). doi:10.1073/pnas.032663199

    Article  MATH  Google Scholar 

  27. Majda A.J., Timofeyev I.: Statistical mechanics for truncations of the Burgers–Hopf equation: a model of intrinsic stochastic behavior with scaling. Milan J. Math. 70, 39–96 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Majda A.J., Timofeyev I., Vanden-Eijnden E.: Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci. 60, 1705–1722 (2003)

    Article  MathSciNet  Google Scholar 

  29. Majewski D., Liermann D., Prohl P., Ritter B., Buchhold M., Hanisch T., Paul G., Wergen W., Baumgardner J.: The operational global icosahedral hexagonal gridpoint model GME: description and high-resolution tests. Mon. Weather Rev. 130, 319 (2002). doi:10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2

    Article  Google Scholar 

  30. Orrell D., Smith L.: Visualising bifurcations in high dimensional systems: the spectral bifurcation diagram. Int. J. Bifurcat. Chaos. 13, 3015–3027 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Palmer T.N.: A nonlinear dynamical perspective on model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate pres-diction models. Q. J. R. Meteorol. Soc. 127, 279–304 (2001). doi:10.1002/qj.49712757202

    Google Scholar 

  32. Plant R.S., Craig G.C.: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci. 65, 87 (2008). doi:10.1175/2007JAS2263.1

    Article  Google Scholar 

  33. Rípodas P., Gassmann A., Förstner J., Majewski D., Giorgetta M., Korn P., Kornblueh L., Wan H., Zängl G., Bonaventura L., Heinze T.: Icosahedral shallow water model (ICOSWM): results of shallow water test cases and sensitivity to model parameters. Geosci. Model. Dev. 2, 231– (2009)

    Article  Google Scholar 

  34. Satoh M., Matsuno T., Tomita H., Miura H., Nasuno T., Iga S.: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys. 227, 3486–3514 (2008). doi:10.1016/j.jcp.2007.02.006

    Article  MathSciNet  MATH  Google Scholar 

  35. Schumann U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  36. Selten F.M.: An efficient description of the dynamics of barotropic flow. J. Atmos. Sci. 52, 915–936 (1995). doi:10.1175/1520-0469(1995)052<0915:AEDOTD>2.0.CO;2

    Article  Google Scholar 

  37. Smagorinsky J.: General circulation experiments with the primiteve equations. Mon. Weather Rev. 91, 99–165 (1963)

    Article  Google Scholar 

  38. Sorensen D., Gianola D.: Likelihood, bayesian and MCMC methods in quantitative genetics. Springer, New York (2010)

    Google Scholar 

  39. Winkler C.R., Newman M., Sardeshmukh P.D.: A linear model of wintertime low-frequency variability. Part I: formulation and forecast skill. J. Clim. 14, 4474–4494 (2001). doi:10.1175/1520-0442(2001)014<4474:ALMOWL>2.0.CO;2

    Article  Google Scholar 

  40. Zabusky N.J., Kruskal M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965). doi:10.1103/PhysRevLett.15.240

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Dolaptchiev.

Additional information

Communicated by R. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolaptchiev, S.I., Achatz, U. & Timofeyev, I. Stochastic closure for local averages in the finite-difference discretization of the forced Burgers equation. Theor. Comput. Fluid Dyn. 27, 297–317 (2013). https://doi.org/10.1007/s00162-012-0270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-012-0270-1

Keywords

Navigation