Skip to main content
Log in

Separation vortices and pattern formation

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–Pohlhausen approach to stationary boundary layers with free surfaces going through separation, and thus obtain a quantitative theory of the simplest type of hydraulic jump, where a single separation vortex is present outside the jump. A second type of jump, where an additional roller appears at the surface, cannot be captured by this approach and has not been given an adequate theoretical description. Such a model is needed to describe “polygonal” hydraulic jumps, which occur by spontaneous symmetry breaking of the latter state. Time-dependent separation is of importance in the formation of sand ripples under oscillatory flow, where the separation vortices become very strong. In this case no simple theory exists for the determination of the location and strengths of separation vortices over a wavy bottom of arbitrary profile. We have, however, recently suggested an amplitude equation describing the long-time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tani I.: Water jump in the boundary layer. J. Phys. Soc. Japan 4, 212 (1949)

    Article  MathSciNet  Google Scholar 

  2. Watson E.J.: The radial spread of a liquid jet over a horizontal plate. J. Fluid Mech. 20, 481 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bohr T., Dimon P., Putkaradze V.: Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635 (1993)

    Article  MATH  Google Scholar 

  4. Rayleigh L.: On the theory of long waves and bores. Proc. R. Soc. Lond. A 90, 324 (1914)

    Article  Google Scholar 

  5. Watanabe S., Putkaradze V., Bohr T.: Integral methods for shallow free-surface flows with separation. J. Fluid Mech. 480, 233 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonn D., Andersen A., Bohr T.: Hydraulic jumps in a channel. J. Fluid Mech. 618, 71 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bohr T., Ellegaard C., Espe Hansen A., Haaning A.: Hydraulic jumps, flow separation and wave breaking: an experimental study. Physica B 228, 1 (1996)

    Article  Google Scholar 

  8. Ellegaard C., Espe Hansen A., Haaning A., Hansen K., Marcussen A., Bohr T., Lundbek Hansen J., Watanabe S.: Creating corners in kitchen sinks. Nature 392, 767 (1998)

    Article  Google Scholar 

  9. Bush J.W.M., Aristoff J.M., Hosoi A.E.: An experimental investigation of the stability of the circular hydraulic jump. J. Fluid Mech. 558, 33 (2006)

    Article  MATH  Google Scholar 

  10. Ayrton H.: The origin and growth of ripple-mark. Proc. R. Soc. Lond. A 84, 285 (1910)

    Article  Google Scholar 

  11. Bagnold R.A.: Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc. R. Soc. Lond. A 187, 1 (1946)

    Article  Google Scholar 

  12. Stegner A., Wesfreid J.E.: Dynamical evolution of sand ripples under water. Phys. Rev. E 60, R3487 (1999)

    Article  Google Scholar 

  13. Scherer M.A., Melo F., Marder M.: Sand ripples in an oscillating annular sand–water cell. Phys. Fluids 11, 58 (1999)

    Article  MATH  Google Scholar 

  14. Rousseaux G., Stegner A., Wesfreid J.E.: Wavelength selection of rolling-grain ripples in the laboratory. Phys. Rev. E 69, 031307 (2004)

    Article  Google Scholar 

  15. Schnipper T., Mertens K., Ellegaard C., Bohr T.: Amplitude equation and long-range interactions in underwater sand ripples in one dimension. Phys. Rev. E 78, 047301 (2008)

    Article  Google Scholar 

  16. Cross M., Hohenberg P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 852 (1993)

    Article  Google Scholar 

  17. Blondeaux P.: Sand ripples under sea waves. Part 1. Ripple formation. J. Fluid Mech. 218, 1 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krug J.: Coarsening of vortex ripples in sand. Adv. Complex Syst. 4, 353 (2001)

    Article  MATH  Google Scholar 

  19. Rousseaux G., Caps H., Wesfreid J.-E.: Granular size segregation in underwater sand ripples. Eur. Phys. J. E 13, 213 (2004)

    Article  Google Scholar 

  20. Politi P.: Kink dynamics in a one-dimensional growing surface. Phys. Rev. E 58, 281 (1998)

    Article  Google Scholar 

  21. Politi P., Misbah C.: Nonlinear dynamics in one dimension: a criterion for coarsening and its temporal law. Phys. Rev. E 73, 036133 (2006)

    Article  MathSciNet  Google Scholar 

  22. Hansen J.L., van Hecke M., Haaning A., Ellegaard C., Andersen K.H., Bohr T., Sams T.: Instabilities in sand ripples. Nature 410, 324 (2001)

    Article  Google Scholar 

  23. Hansen J.L., van Hecke M., Haaning A., Ellegaard C., Andersen K.H., Bohr T., Sams T.: Stability balloon for two-dimensional vortex ripple patterns. Phys. Rev. Lett. 87, 204301 (2001)

    Article  Google Scholar 

  24. Couder Y., Basdevant C.: Experimental and numerical study of vortex couples in two-dimensional flows. J. Fluid Mech. 173, 225 (1986)

    Article  Google Scholar 

  25. Gharib M., Derango P.: A liquid film (soap film) tunnel to study two-dimensional laminar and turbulent shear flows. Physica D 37, 406 (1989)

    Article  Google Scholar 

  26. Zhang J., Childress S., Libchaber A., Shelley M.: Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835 (2000)

    Article  Google Scholar 

  27. Williamson C.H.K., Roshko A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355 (1988)

    Article  Google Scholar 

  28. Koochesfahani M.M.: Vortical patterns in the wake of an oscillating airfoil. AIAA J. 27, 1200 (1989)

    Article  Google Scholar 

  29. Lai J.C.S., Platzer M.F.: Jet characteristics of a plunging airfoil. AIAA J. 37, 1529 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Bohr.

Additional information

Communicated by H. Aref

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, A., Bohr, T. & Schnipper, T. Separation vortices and pattern formation. Theor. Comput. Fluid Dyn. 24, 329–334 (2010). https://doi.org/10.1007/s00162-009-0102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-009-0102-0

Keywords

PACS

Navigation