Skip to main content

Advertisement

Log in

Structure of tropical variability from a vertical mode perspective

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A composite mesoscale precipitation event and a convectively coupled Kelvin wave produced by a diabatically accelerated cloud resolving model are compared. Special emphasis is placed on the vertical structure of density and moisture perturbations and the interaction of these perturbations with the composited dynamical fields. Both composites share the same general features, a gradual deepening and strengthening of convection followed by deep convection and a stratiform region, quite similar in character to observations and some recent idealized models. Composited frozen moist static energy (FMSE) perturbations are several times larger than virtual temperature perturbations, suggesting moisture is a dominant regulator of convection. An empirically derived two vertical mode decomposition of the dynamical and moisture fields is found to reproduce both composites quite well. The leading vertical modes of FMSE and virtual temperature variability are strongly correlated with the modes of vertical velocity variability; these correlations are strongest at near-zero time lags. Deep convection is associated with moistening in the lower and middle troposphere, while shallow convection is associated with a moist lower troposphere and dry middle and upper troposphere. To the extent that our numerical model is realistic, the empirical modal decomposition provides support for the use of two-mode idealized models for convective interaction with large-scale circulations and guidance for formulating feedbacks between convection and the thermodynamic profile in such models. The FMSE budget leads to an interpretation of the convective life-cycle as a recharge–discharge mechanism in column-integrated FMSE. The budget analysis places diabatic forcing, surface and radiative fluxes into the moist energetic framework. In particular, these fluxes are seen to prolong active convection, but play a passive role in its initiation. The modally decomposed FMSE budget highlights the dynamical importance of the second baroclinic mode in moistening the lower and middle troposphere before convective onset (recharging), and then discharging stored FMSE in the stratiform region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blossey, P.N., Bretherton, C.S., Cetrone, J., Kharoutdinov, M.: Cloud-resolving model simulations of KWAJEX: model sensitivities and comparisions with satellite and radar observations. J. Atmos. Sci. (accepted, 2006)

  2. Bretherton, C.S., Blossey, P.N., Peters, M.E.: Interpretation if simple and cloud-resolving models of moist convection–radiation interaction with a mock-Walker circulation. Theor. Comp. Fluid Dyn. (in press, 2005)

  3. Bretherton C.S., Peters M.E., Back L.E. (2004). Relationships between water vapor path and precipitation over the tropical oceans. J. Climate 17:1517–1528

    Article  ADS  Google Scholar 

  4. Carr M.T., Bretherton C.S. (2001). Convective momentum transport over the tropical Pacific: budget estimates. J. Atmos. Sci. 58:1673–1693

    Article  ADS  Google Scholar 

  5. Emanuel K.A., Neelin J.D., Bretherton C.S. (1994). On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteorol. Soc. 120:1111–1143

    Article  ADS  Google Scholar 

  6. Fulton S.R., Schubert W.H. (1985). Vertical normal mode transforms: theory and application. Mon. Wea. Rev. 113:647–658

    Article  Google Scholar 

  7. Grabowski W.W. (2001). Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 58:978–997

    Article  ADS  Google Scholar 

  8. Haertel P.T., Kiladis G.N. (2004). Dynamics of 2-day equatorial waves. J. Atmos. Sci. 61:2707–2721

    Article  ADS  Google Scholar 

  9. Houze, R.A.: Cloud dynamics. Academic Press (1993)

  10. Khairoutdinov M.F., Randall D.A. (2003). Cloud resolving modeling of the ARM Summer 1997 IOP: model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci. 60:607–625

    Article  ADS  Google Scholar 

  11. Khouider, B., Majda, A.J.: Model multicloud parameterizations for convectively coupled waves: detailed nonlinear wave evolution. Dyn. Atmos. Ocean. (accepted, 2005)

  12. Khouider, B., Majda, A.J.: Multicloud convective parameterizations with crude vertical structure. Theor. Comp. Fluid Dyn. (in press, 2005)

  13. Khouider B., Majda A.J. (2006). A simple multicloud parameterization for convectively coupled tropical waves. Part I: linear analysis. J. Atmos. Sci. 63(4):1308–1323

    MathSciNet  ADS  Google Scholar 

  14. Khouider, B., Majda, A.J.: A simple multicloud parameterization for convectively coupled tropical waves. Part II: nonlinear simulations. J. Atmos. Sci. (accepted, 2005)

  15. Kuang Z., Blossey P.N., Bretherton C.S. (2005). A new approach for 3D cloud resolving simulations of large scale atmospheric circulations. Geophys. Res. Letts. 32:L02–809. DOI 10.1029/2004GL021,024

    Article  Google Scholar 

  16. Kuang, Z., Bretherton, C.S.: A mass flux scheme view of a high-resolution simulation of transition from shallow to deep cumulus convection. J. Atmos. Sci. (in press, 2006)

  17. Lin J.L., Zhang M., Mapes B. (2005). Zonal momentum budget of the Madden-Julian Oscillation: the source and strength of equivalent linear damping. J. Atmos. Sci. 62:2172–2188

    Article  ADS  Google Scholar 

  18. Madden R.A., Julian P.R. (1972). Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29:1109–1123

    Article  ADS  Google Scholar 

  19. Majda A.J., Khouider B., Kiladis G.N., Straub K.H., Shefter M.G. (2004). A model for convectively coupled tropical waves: nonlinearity, rotation, and comparison with observations. J. Atmos. Sci. 61:2188–2205

    Article  MathSciNet  ADS  Google Scholar 

  20. Maloney E.D., Hartmann D.L. (1998). Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Clim. 11:2387–2403

    Article  ADS  Google Scholar 

  21. Mapes, B., Tulich, S., Lin, J., Zuidema, P.: The mesoscale convection life cycle: building block or prototype for large-scale tropical waves? Dyn. Atmos. Ocean. (in press, 2006)

  22. Mapes B.E. (2000). Convective inhibition, subgridscale triggering, and stratiform instability in a toy tropical wave model. J. Atmos. Sci. 57:1515–1535

    Article  ADS  Google Scholar 

  23. Mapes B.E. (2004). Sensitivities of cumulus-ensemble rainfall in a cloud-resolving model with parameterized large-scale dynamics. J. Atmos. Sci. 61:2308–2317

    Article  ADS  Google Scholar 

  24. Matsuno T. (1966). Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn 44:25–42

    Google Scholar 

  25. Moskowitz B.M., Bretherton C.S. (2000). An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci. 57:2188–2206

    Article  ADS  Google Scholar 

  26. Neelin J.D., Held I.M. (1987). Modeling tropical convergence based on the moist static energy budget. Mon. Weather. Rev. 115:3–12

    Article  Google Scholar 

  27. Pauluis, O., Frierson, D., Garner, S., Held, I., Vallis, G: The hypohydrostatic rescaling and its impacts on atmospheric convection. Theor. Comp. Fluid Dyn. (submitted, 2006)

  28. Sherwood S.C. (1999). Convective precursors and predictability in the tropical west Pacific. Mon. Weather. Rev. 127:2977–2991

    Article  Google Scholar 

  29. Sherwood S.C., Wahrlich R. (1999). Observed evolution of tropical deep convective events and their environment. Mon. Weather. Rev. 127:1777–1795

    Article  Google Scholar 

  30. Straub K.H., Kiladis G.N. (2003). The observed structure of convectively coupled kelvin waves: comparison with simple models of coupled wave instability. J. Atmos. Sci. 60:1655–1668

    Article  MathSciNet  ADS  Google Scholar 

  31. Tomita H., Miura H., Iga S., Nasuno T., Satoh M. (2005). A global cloud-resolving simulation: preliminary results from an aqua planet experiment. J. Geophys. Res. 32:L08–805, DOI 10.1029/2005GL022,459

    Google Scholar 

  32. Trenberth K.E., Stepaniak D.P. (2003). Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Clim. 16:3691–3705

    Article  ADS  Google Scholar 

  33. Wang B. (1988). Dynamics of tropical low-frequency waves: an analysis of the moist Kelvin wave. J. Atmos. Sci. 45:2051–2065

    Article  ADS  Google Scholar 

  34. Wheeler M., Kiladis G.N. (1999). Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci. 56:374–399

    Article  ADS  Google Scholar 

  35. Wheeler M., Kiladis G.N., Webster P.J. (2000). Large-scale dynamical fields associated with convectively coupled waves. J. Atmos. Sci. 57:613–640

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Peters.

Additional information

Communicated by R. Klein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, M.E., Bretherton, C.S. Structure of tropical variability from a vertical mode perspective. Theor. Comput. Fluid Dyn. 20, 501–524 (2006). https://doi.org/10.1007/s00162-006-0034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0034-x

Keywords

PACS

Navigation