Skip to main content
Log in

General approach to the modified Kirsch problem incorporating surface energy effects

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Within the general approach to the modified Kirsch problem incorporating surface elasticity and residual surface stress (surface tension) by the original Gurtin–Murdoch model, the proper boundary conditions at an arbitrary cylindrical surface are derived in terms of complex variables for the plane strain and plane stress. In the case of the plane stress, the properties are allowed for not only of the cylindrical surface but the faces of a plate with the nanosized thickness as well. The solution of both 2-D problems on the infinite plane with the circular hole subjected to a uniform far-field load is obtained in a closed form. It is shown that under plane strain conditions, the general formulas for the stress tensor components are reduced to the modified Kirsch solution at the nanoscale in the case of the uniaxial loading. At the same time, the uniaxial remote loading alone is impossible in the case of the plane stress because of the presence of the axisymmetric surface tension at the faces of the plate. Analytical solution shows that the elastic field of the plate depends on the plate thickness. Numerical examples are given in the paper to illustrate quantitatively the effect of the plate thickness on the stress field at the cylindrical surface and the role of surface tension in the corresponding plane strain problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altenbach, H., Eremeyev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach, H., Eremeyev, V.A.: On the elastic plates and shell theory with residual surface stresses. Procedia IUTAM. 21, 25–32 (2017)

    Article  Google Scholar 

  3. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Linear theory of shells taking into account surface stresses. Dokl. Phys. 54, 531–535 (2009)

    Article  ADS  Google Scholar 

  4. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45, 331–342 (2010)

    Article  ADS  Google Scholar 

  5. Bauer, S.M., Kashtanova, S.V., Morozov, N.F., Semenov, B.N.: Stability of a nanoscale-thickness plate weakened by a circular hole. Doklady Phys. 59, 416–418 (2014)

    Article  ADS  Google Scholar 

  6. Bochkarev, A.O., Grekov, M.A.: Local instability of a plate with a circular nanohole under uniaxial tension. Doklady Phys. 59, 330–334 (2014)

    Article  ADS  Google Scholar 

  7. Bochkarev, A.O., Grekov, M.A.: The influence of the surface stress on the local buckling of a plate with a circular nanohole. In: 2015 International Conference on “Stability and Control Processes” in Memory of V. I. Zubov (SCP), IEEE. pp. 367–370 (2015)

  8. Bochkarev, A.O., Grekov, M.A.: Influence of surface stresses on the nanoplate stiffness and stability in the Kirsch problem. Phys. Mesomech. 22, 209–223 (2019)

    Article  Google Scholar 

  9. Dai, M., Yang, H.-B., Schiavone, P.: Stress concentration around an elliptical hole with surface tension based on the original Gurtin–Murdoch model. Mech. Mater. 135, 144–148 (2019)

    Article  Google Scholar 

  10. Duan, H.L., Wang, J., Huang, Z.P., Luo, Z.Y.: Stress concentration tensors of inhomogeneities with interface effects. Mech. Mater. 37, 723–736 (2005)

    Article  Google Scholar 

  11. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2009)

    Article  Google Scholar 

  12. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eremeyev, V.A., Altenbach, H., Morozov, N.F.: The influence of surface tension on the effective stiffness of nanosize plates. Doklady Phys. 54, 98–100 (2009)

    Article  ADS  MATH  Google Scholar 

  14. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1. Longmans-Green, London (1906)

    MATH  Google Scholar 

  15. Gorbushin, N., Eremeyev, V.A., Mishuris, G.: On the stress singularity near the tip of a crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grekov, M.A.: Fundamental solution for the generalized plane stress of a nanoplate. Adv. Struct. Mater. 108, 157–164 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grekov, M.A., Kostyrko, S.A., Vakaeva, A.B.: The model of surface nanorelief within continuum mechanics. AIP Conf. Proc. 1909, 020062 (2017)

    Article  Google Scholar 

  18. Grekov, M.A., Morozov, N.F.: Surface effects and problems of nanomechanics. J. Ningbo Univ. (NSEE) 25(1), 60–63 (2012)

    Google Scholar 

  19. Grekov, M.A., Sergeeva, T.S.: Interaction of edge dislocation array with bimaterial interface incorporating interface elasticity. Int. J. Eng. Sci. 149, 103233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grekov, M.A., Vakaeva, A.B.: Effect of nanosized asperities at the surface of a nanohole. Proc. VII Eur. Congr. Comput. Methods Appl. Sci. Eng. 4(1), 7875–7885 (2016)

    Article  Google Scholar 

  21. Grekov, M.A., Yazovskaya, A.A.: The effect of surface elasticity and residual surface stress in an elastic body with an elliptic nanohole. J. Appl. Math. Mech. 78, 172–180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  24. Gutkin, M.Y., Enzevaee, C., Shodja, H.M.: Interface effects behavior of an edge dislocation in core-shell nanowire embedded to an infinite matrix. Int. J. Solids Struct. 50, 1177–1186 (2013)

    Article  Google Scholar 

  25. Javili, A., Dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–401 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kim, C.I., Schiavone, P., Ru, C.-Q.: Analysis of plane-strain crack problems (mode-I and mode-II) in the presence of surface elasticity. J. Elast. 104, 397–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kirsch, E.G.: Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereines deutscher Ingenieure. 42, 797–807 (1898)

    Google Scholar 

  28. Kostyrko, S.A., Altenbach, H., Grekov, M.A.: Stress concentration in ultra-thin film coating with undulated surface profile. In: Papadrakasis, M., Oñate, E., Schrefler, B.: VII International Conference on Computational Methods for Coupled Problems in Science and Engineering, Coupled Problems 2017, pp. 1183–1192. CIMNE, Barcelona (2017)

  29. Kostyrko, S.A., Grekov, M.A., Altenbach, H.: A model of nanosized thin film coating with sinusoidal interface. AIP Conf. Proc. 1959, 070017 (2018)

    Article  Google Scholar 

  30. Kostyrko, S., Grekov, M., Altenbach, H.: Stress concentration analysis of nanosized thin-film coating with rough interface. Continuum Mech. Thermodyn. 31, 1863–1871 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  32. Liu, C., Rajapakse, R.K.N.D.: Continuum models incorporating surface energy for static an dynamic response of nanoscale beams. IEEE Trans. Nanotechnol. 9(4), 422–431 (2010)

    Article  ADS  Google Scholar 

  33. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnol. 11, 139–147 (2000)

    Article  ADS  Google Scholar 

  34. Mogilevskaya, S.G., Crouch, S.I., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56, 2298–2327 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Mogilevskaya, S.G., Kushch, V.I., Zemlyanova, A.Y.: Displacements representation for the problems with spherical and circular materials surfaces. Quart. J. Mech. Appl. Math. 72, 449–471 (2019)

    Article  MathSciNet  Google Scholar 

  36. Mogilevskaya, S.G., Pyatigorets, A.V., Crouch, S.I.: Green function for the problem of a plane containing a circular hole with surface effects. Trans. ASME. J. Appl. Mech. 78, 021008 (2011)

    Article  ADS  Google Scholar 

  37. Moriarty, P.: Nanostructured materials. Rep. Prog. Phys. 64, 297–381 (2001)

    Article  ADS  Google Scholar 

  38. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory Of Elasticity. P. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  39. Novozhilov, V.V.: Theory of Elasticity. Pergamon Press, Oxford (1961)

    MATH  Google Scholar 

  40. Parvanova, S., Vasilev, G., Dineva, P.: Elastic wave scattering and stress concentration in a finite anisotropic solid with nano-cavities. Arch. Appl. Mech. 87, 1947–1964 (2017)

    Article  ADS  Google Scholar 

  41. Podstrigach, Y.S., Povstenko, YuZ: An Introduction to the Mechanics of Surface Phenomena in Deformable Solids. Naukova Dumka, Kiev (1985). (in Russian)

    MATH  Google Scholar 

  42. Povstenko, YuZ: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rosei, F.: Nanostructured surfaces: challenges and frontiers in nanotechnology. J. Phys.: Condensed Matter. 16, S1373–S1436 (2004)

    ADS  Google Scholar 

  44. Shodja, H.M., Ahmadzadeh-Bakhshayesh, H., Gutkin, M.Y.: Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int. J. Solids Struct. 49, 759–770 (2012)

    Article  Google Scholar 

  45. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A. 453, 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A. 455, 437–74 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Tian, L., Rajapakse, R.K.N.D.: Analytical solution for size-dependent elastic field of a nanoscale circular inhomogeneity. Trans ASME. J. Appl. Mech 74, 568–574 (2007)

    Article  ADS  MATH  Google Scholar 

  48. Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44, 7988–8005 (2007)

    Article  MATH  Google Scholar 

  49. Vakaeva, A.B., Grekov, M.A.: Effect of interfacial stresses in an elastic body with a nanoinclusion. AIP Conf. Proc. 1959, 070036 (2018)

    Article  Google Scholar 

  50. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  Google Scholar 

  51. Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with Steigmann–Ogden interface: local fields, neutrality, and Maxwell’s type approximation formula. Int. J. Silids Struct. 135, 85–98 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Grekov.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the Russian Foundation for Basic Research under Grant 18-01-00468.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grekov, M.A. General approach to the modified Kirsch problem incorporating surface energy effects. Continuum Mech. Thermodyn. 33, 1675–1689 (2021). https://doi.org/10.1007/s00161-021-01005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01005-3

Keywords

Navigation