Skip to main content
Log in

Influence of boundary conditions on the solution of a hyperbolic thermoelasticity problem

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider a series of problems with a short laser impact on a thin metal layer accounting various boundary conditions of the first and second kind. The behavior of the material is modeled by the hyperbolic thermoelasticity of Lord–Shulman type. We obtain analytical solutions of the problems in the semi-coupled formulation and numerical solutions in the coupled formulation. Numerical solutions are compared with the analytical ones. The analytical solutions of the semi-coupled problems and numerical solutions of the coupled problems show qualitative match. The solutions of hyperbolic thermoelasticity problems are compared with those obtained in the frame of the classical thermoelasticity. It was determined that the most prominent difference between the classical and hyperbolic solutions arises in the problem with fixed boundaries and constant temperature on them. The smallest differences were observed in the problem with unconstrained, thermally insulated edges. It was shown that a cooling zone is observed if the boundary conditions of the first kind are given for the temperature. Analytical expressions for the velocities of the quasiacoustic and quasithermal fronts as well as the critical value for the attenuation coefficient of the excitation impulse are verified numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord, H.W., Shulman, Y.A.: Generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  2. Dahotre, N.B.: Laser surface engineering. Adv. Mater. Process. 160(7), 35–39 (2002)

    Google Scholar 

  3. Miyazaki, K.: Generation and control of hight intensity ultrashort laser pulses. Laser Res. 27(5), 319–323 (1999)

    Article  Google Scholar 

  4. Yabe, A.: Advanced material processing using hight-intensity laser pulse. Laser Res. 27(5), 336–340 (1999)

    Article  Google Scholar 

  5. Pop, E., Sinha, S., Goodson, K.E.: Heat generation and transport in nanometer scale transistors. In: Proceedings of the IEEE, 2006, vol. 94, pp. 1587–1601

  6. Tong, X.C.: Development and Application of Advanced Thermal Management Materials. Springer, New York (2011)

    Book  Google Scholar 

  7. Haque, M.A., Saif, M.T.A.: Thermo-mechanical properties of nano-scale freestanding aluminum films. Thin Solid Films 484(1), 364–368 (2005)

    Article  ADS  Google Scholar 

  8. Poletkin, K.V., Gurzadyan, G.G., Shang, J., Kulish, V.: Ultrafast heat transfer on nanoscale in thin gold films. Appl. Phys. B 107(1), 137–143 (2012)

    Article  ADS  Google Scholar 

  9. Wang, H.-D., Ma, W.-G., Zhang, X., Wang, W., Guo, Z.-Y.: Theoretical and experimental study on the heat transport in metallic nanofilms heated by ultra-short pulsed laser. Int. J. Heat Mass Transf. 54(4), 967–974 (2011)

    Article  MATH  Google Scholar 

  10. Ning, Y., Imatani, S., Inoue, T.: Hyperbolic thermoelastic analysis due to pulsed heat input by numerical simulation. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 49(2), 180–187 (2006)

    ADS  Google Scholar 

  11. Melnik, R.V.: Discrete models of coupled dynamic thermoelasticity for stresstemperature formulations. Appl. Math. Comput. 122(1), 107–132 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Youssef, H.M.: State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating. Can. Appl. Math. Q. 13, 4 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  14. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998). doi:10.1115/1.3098984

    Article  ADS  Google Scholar 

  15. Engelbrecht, J., Maugin, G.A.: Deformation waves in thermoelastic media and the concept of internal variables. Arch. Appl. Mech. 66(3), 200–207 (1996)

    Article  ADS  MATH  Google Scholar 

  16. Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  17. Wang, C.C.: The principle of fading memory. Arch. Ration. Mech. Anal. 18(5), 343–366 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tzou, D.Y.: Macro-to-Microscale Heat Transfer. The Lagging Behaviour. Taylor and Francis, New York (1997)

    Google Scholar 

  19. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32(2–5), 273–286 (2012)

    Google Scholar 

  20. Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011)

    Chapter  Google Scholar 

  21. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two component Cosserat continuum. Acta Mech. 225(3), 757–795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Babenkov, M.B.: Propagation of harmonic perturbations in a thermoelastic medium with heat relaxation. J. Appl. Mech. Tech. Phys. 54(2), 277–286 (2013)

    Article  ADS  MATH  Google Scholar 

  23. Nowacki, W.: Dynamic Problems of Thermoelasticity. Springer, New York (1975)

    MATH  Google Scholar 

  24. Palmov, V.A.: The Fundamental Laws of Nature in the Non-linear Continuum Thermomechanics. Polytechnic University Publishing House, St. Petersburg (2008). (in Russian)

    Google Scholar 

  25. Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012). (In Russian)

    Google Scholar 

  26. Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Vovnenko, N.V., Zimin, B.A., Sud’enkov, Y.V.: Nonequilibrium motion of a metal surface exposed to sub-microsecond laser pulses. Zhurnal tekhnicheskoi fiziki 80(7), 41–45 (2010). (in Russian)

    Google Scholar 

  28. Babenkov, M.B., Ivanova, E.A.: Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type. Contin. Mech. Thermodyn. 26(4), 483–502 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Vitokhin, E.Y., Babenkov, M.B.: Numerical and analytical studies of the propagation of thermoelastic waves in a medium taking into account heat flow relaxation. J. Appl. Mech. Tech. Phys. 57(3), 537–549 (2016)

    Article  ADS  Google Scholar 

  30. Lebedev, N.N., Skalskaya, I.P., Uflyand, I.P.: Worked Problems in Applied Mathematics. Dover, New York (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Yu. Vitokhin.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitokhin, E.Y., Babenkov, M.B. Influence of boundary conditions on the solution of a hyperbolic thermoelasticity problem. Continuum Mech. Thermodyn. 29, 457–475 (2017). https://doi.org/10.1007/s00161-016-0540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0540-z

Keywords

Navigation