Skip to main content
Log in

Modeling nanostructural surface modifications in metal cutting by an approach of thermodynamic irreversibility: Derivation and experimental validation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jawahir, I.S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D., Outeiro, J., Meyer, D., Umbrello, D., Jayal, A.: Surface integrity in material removal processes: recent advances. CIRP Ann. Manuf. Technol. 60, 603–626 (2012)

    Article  Google Scholar 

  2. DeGarmo, E.P.: Materials and Processes in Manufacturing. Macmillan, New York (2003)

    Google Scholar 

  3. Hall, E.O.: The deformation and ageing of mild steel: II Characteristics of the Lüders deformation. Proc. Phys. Soc. B 64, 742–747 (1951)

    Article  ADS  Google Scholar 

  4. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Res. Int. 174, 25–28 (1953)

    Google Scholar 

  5. Astakhov, V.P.: Surface integrity—definition and importance in functional performance. In: Davim, J.P. (ed.) Surface Integrity in Machining, pp. 1–35. Springer, London (2010)

    Chapter  Google Scholar 

  6. Zhang, B., Shen, W., Liu, Y., Tang, X., Wang, Y.: Microstructures of surface white layer and internal white adiabatic shear band. Wear 211, 164–168 (1997)

    Article  Google Scholar 

  7. Bosheh, S.S., Mativenga, P.T.: White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling. Int. J. Mach. Tools Manuf. 46, 225–233 (2006)

    Article  Google Scholar 

  8. Ulutan, D., Ozel, T.: Machining induced surface integrity in titanium and nickel alloys: a review. Int. J. Mach. Toold Manuf. 51, 250–280 (2011)

    Article  Google Scholar 

  9. Wusatowska-Sarnek, A.M., Dubiel, B., Czyrska-Filemonowicz, A., Bhowal, P.R., Ben Salah, N., Klemberg-Sapieha, J.E.: Microstructural characterization of the white etching layer in nickel-based superalloy. Metall. Mater. Trans. A 42, 3813–3825 (2011)

    Article  Google Scholar 

  10. Akcan, S., Shah, W.S., Moylan, S.P., Chandrasekar, S., Chhabra, P.N., Yang, H.T.Y.: Formation of white layers in steels by machining and their characteristics. Metall. Mater. Trans. A 33, 1245–1254 (2002)

    Article  Google Scholar 

  11. Barry, J., Byrne, G.: TEM study on the surface white layer in two turned hardened steels. Mater. Sci. Eng. A Struct. 325, 356–364 (2002)

    Article  Google Scholar 

  12. Ramesh, A., Melkote, S.N., Allard, L.F., Riester, L., Watkins, T.R.: Analysis of white layers formed in hard turning of AISI 52100 steel. Mater. Sci. Eng. A Struct. 390, 88–97 (2005)

    Article  Google Scholar 

  13. Schulze, V., Zanger, F., Ambrosy, F.: Quantitative microstructural analysis of nanocrystalline surface layer induced by a modified cutting process. Adv. Mater. Res. 769, 109–115 (2013)

    Article  Google Scholar 

  14. Bushlya, V., Zhou, J.M., Lenrick, F., Avdovic, P., Ståhl, J.-E.: Characterization of white layer generated when turning aged Inconel 718. Proc. Eng. 19, 60–66 (2011)

    Article  Google Scholar 

  15. Herbert, C., Axinte, D.A., Hardy, M.C., Brown, P.D.: Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations. Proc. Eng. 19, 138–143 (2011)

    Article  Google Scholar 

  16. Campbell, C.E., Bendersky, L.A., Boettinger, W.J., Ivester, R.: Microstructural characterization of Al-7075-T651 chips and work pieces produced by high-speed machining. Mater. Sci. Eng. A Struct. 430, 15–26 (2006)

    Article  Google Scholar 

  17. Quan, G.-Z., Li, G.-S., Chen, T., Wang, Y.-X., Zhang, Y.-W., Zhou, J.: Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates. Mater. Sci. Eng. A Struct. 528, 4643–4651 (2011)

    Article  Google Scholar 

  18. Jonas, J.J., Quelennec, X., Jiang, L., Martin, É.: The Avrami kinetics of dynamic recrystallization. Acta Mater. 57, 2748–2756 (2009)

    Article  Google Scholar 

  19. Yanagimoto, J., Karhausen, K., Brand, A.J., Kopp, R.: Incremental formulation for the prediction of flow stress and microstructural change in hot forming. J. Manuf. Sci. Eng. 120, 316–322 (1998)

    Article  Google Scholar 

  20. Poliak, E.I., Jonas, J.J.: A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Mater. 44, 127–136 (1996)

    Article  Google Scholar 

  21. Avrami, M.: Kinetics of phase change. I General theory. J. Chem. Phys. 7, 1103–1112 (1939)

  22. Avrami, M.: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940)

    Article  ADS  Google Scholar 

  23. Avrami, M.: Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9, 177–184 (1941)

    Article  ADS  Google Scholar 

  24. Cram, D.G., Zurob, H.S., Brechet, Y., Hutchinson, C.R.: Modelling discontinuous dynamic recrystallization using a physically based model for nucleation. Acta Mater. 57, 5218–5228 (2009)

    Article  Google Scholar 

  25. Bernard, P., Bag, S., Huang, K., Logé, R.E.: A two-site mean field model of discontinuous dynamic recrystallization. Mater. Sci. Eng. A Struct. 528, 7357–7367 (2011)

    Article  Google Scholar 

  26. Ambrosy, F., Zanger, F., Schulze, V.: FEM-simulation of machining induced nanocrystalline surface layers in steel surfaces prepared for tribological applications. CIRP Ann. Manuf. Technol. 64, 69–72 (2015)

    Article  Google Scholar 

  27. Rotella, G., Dillon, O.W., Umbrello, D., Settineri, L., Jawahir, I.S.: Finite element modeling of microstructural changes in turning of AA7075-T651 alloy. J. Manuf. Process. 15, 87–95 (2013)

    Article  Google Scholar 

  28. Rotella, G., Umbrello, D.: Numerical simulation of surface modification in dry and cryogenic machining of AA7075 alloy. Proc. CIRP 13, 327–332 (2014)

    Article  Google Scholar 

  29. Caruso, S., Di Renzo, S., Umbrello, D., Jayal, A.D., Dillon, O., Jawahir, I.: Finite element modeling of microstructural changes in hard turning. Adv. Mater. Res. 223, 960–968 (2011)

    Article  Google Scholar 

  30. Lucas, K.: Thermodynamik. Die Grundgesetze der Energie- und Stoffumwandlungen. Springer, Berlin (2007)

    Google Scholar 

  31. Hor, A., Morel, F., Lebrun, J.-L., Germain, G.: Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range. Mech. Mater. 64, 91–110 (2013)

    Article  Google Scholar 

  32. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th International Symposium Ballistics, The Hague, The Netherlands, 19– 21 Apr 1983, pp. 541-547 (1983)

  33. Pérez-Castellanos, J.L., Rusinek, A.: Temperature increase associated with plastic deformation under dynamic compression: application to aluminium alloy AL 6082. J. Theor. Appl. Mech. 50, 377–398 (2012)

    Google Scholar 

  34. Spittel, M., Spittel, T.: Steel symbol/number: 42CrMo4/1.7225. In: Martienssen, W., Warlimont, H. (eds.) Metal Forming Data of Ferrous Alloys—Deformation Behaviour, vol. 2C1. Springer, Berlin (2009)

    Google Scholar 

  35. Murr, L.E.: Interfacial Phenomena in Metals and Alloys. Addison-Wesley, Reading (1975)

    Google Scholar 

  36. Meyers, M.A., Nesterenko, V.F., LaSalvia, J.C., Xue, Q.: Shear localization in dynamic deformation of materials: microstructural evolution and self-organization. Mater. Sci. Eng. A Struct. 317, 204–225 (2001)

    Article  Google Scholar 

  37. Sakai, T., Jonas, J.J.: Overview no. 35 Dynamic recrystallization. Mechanical and microstructural considerations. Acta Metall. 32, 189–209 (1984)

    Article  Google Scholar 

  38. Brooks, K.: World directory and handbook of hardmetals and hard materials. International carbide data, East Barnet (1996)

  39. Spriggs, G.E.: 13.4 Properties of hardmetals and cermets, 2A2. In: Beiss, P., Ruthardt, R., Warlimont, H. (eds.) Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Springer, Berlin (2002)

    Google Scholar 

  40. Martan, J., Beneš, P.: Thermal properties of cutting tool coatings at high temperatures. Thermochim. Acta 539, 51–55 (2012)

    Article  Google Scholar 

  41. Zorev, N.: Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. Int. Res. Prod. Eng. 42–49 (1963)

  42. Puls, H., Klocke, F., Lung, D.: A new experimental methodology to analyse the friction behaviour at the tool-chip interface in metal cutting. Prod. Eng. 6, 349–354 (2012)

    Article  Google Scholar 

  43. Klocke, F., Lung, D., Buchkremer, S.: Inverse identification of the constitutive equation of Inconel 718 and AISI 1045 from FE machining simulations. Proc. CIRP 8, 212–217 (2013)

    Article  Google Scholar 

  44. Ratanaphan, S., Olmsted, D.L., Bulatov, V.V., Holm, E.A., Rollett, A.D., Rohrer, G.S.: Grain boundary energies in body-centered cubic metals. Acta Mater. 88, 346–354 (2015)

    Article  Google Scholar 

  45. Astakhov, V.P., Shvets, S.: The assessment of plastic deformation in metal cutting. J. Mater. Process. Technol. 146, 193–202 (2004)

    Article  Google Scholar 

  46. Kishawy, H.A., Hosseini, A., Moetakef-Imani, B., Astakhov, V.P.: An energy based analysis of broaching operation: cutting forces and resultant surface integrity. CIRP Ann. Manuf. Techn. 61, 107–110 (2012)

    Article  Google Scholar 

  47. Buchkremer, S., Klocke, F., Veselovac, D.: 3D FEM simulation of chip breakage in metal cutting. Int. J. Adv. Manuf. Technol. 82, 645–661 (2016)

    Article  Google Scholar 

  48. Dolinšek, S., Ekinović, S., Kopač, J.: A contribution to the understanding of chip formation mechanism in high-speed cutting of hardened steel. J. Mater. Process. Technol. 157–158, 485–490 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Buchkremer.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchkremer, S., Klocke, F. Modeling nanostructural surface modifications in metal cutting by an approach of thermodynamic irreversibility: Derivation and experimental validation. Continuum Mech. Thermodyn. 29, 271–289 (2017). https://doi.org/10.1007/s00161-016-0533-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0533-y

Keywords

Navigation