Skip to main content
Log in

Finite plasticity in \(\varvec{P}^\top \! \varvec{P}\). Part I: constitutive model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We address a finite-plasticity model based on the symmetric tensor \(\varvec{P}^\top \! \varvec{P}\) instead of the classical plastic strain \(\varvec{P}\). Such a structure arises by assuming that the material behavior is invariant with respect to frame transformations of the intermediate configuration. The resulting variational model is lower dimensional, symmetric and based solely on the reference configuration. We discuss the existence of energetic solutions at the material-point level as well as the convergence of time discretizations. The linearization of the model for small deformations is ascertained via a rigorous evolution-\(\Gamma \)-convergence argument. The constitutive model is combined with the equilibrium system in Part II where we prove the existence of quasistatic evolutions and ascertain the linearization limit (Grandi and Stefanelli in 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball, J.M.: Minimizers and the Euler-Lagrange equations. In Trends and Applications of Pure Mathematics to Mechanics (Palaiseau. 1983). Lecture Notes in Physics, vol. 195, pp. 1–4. Springer, Berlin (1984)

  3. Ball, J.M.: Some open problems in elasticity. In: Newton, P. (ed.) Geometry Mechanics and Dynamics. Volume in Honor of the 60th Birthday of J E Marsden, pp. 3–59. Springer, New York (2002)

    Google Scholar 

  4. Brézis, H.: Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Math Studies, vol. 5. North-Holland, Amsterdam, New York (1973)

  5. Casey, J., Naghdi, P.M.: A remark on the use of the decomposition \(F = F_eF_p\) in plasticity. J. Appl. Mech. 47, 672–675 (1980)

    Article  ADS  MATH  Google Scholar 

  6. Ciarlet, P.G.: Mathematical Elasticity, Volume 1: Three Dimensional Elasticity. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  7. Clifton, R.J.: On the equivalence of \(F_e F_p\) and \(F_p F_e\). J. Appl. Mech. 39, 287–289 (1972)

    Article  ADS  Google Scholar 

  8. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davoli, E., Francfort, G.A.: A critical revisiting of finite elasto-plasticity. SIAM J. Math. Anal. 47, 526–565 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Souza Neto, E.A., Perić, D., Owen, D.R.J.: A model for elasto-plastic damage at finite strains computational issues and applications. Eng. Comput. 11, 257–281 (1994)

    Article  Google Scholar 

  11. Dettmer, W., Reese, S.: On the theoretical and numerical modelling of Armstrong–Frederick kinematic hardening in the finite strain regime. Comput. Methods Appl. Mech. Eng. 193, 87–116 (2004)

    Article  ADS  MATH  Google Scholar 

  12. Dunford, N., Schwartz, J.T.: Linear Operators, Part 1: General Theory, Pure and Applied Mathematics, 7th edn. Wiley, Hoboken (1988)

    Google Scholar 

  13. Eterovic, A.L., Bathe, K.-J.: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int. J. Numer. Methods Eng. 30, 1099–1114 (1990)

    Article  MATH  Google Scholar 

  14. Evangelista, V., Marfia, S., Sacco, E.: Phenomenological 3D and 1D consistent models for shape-memory alloy materials. Comput. Mech. 44, 405–421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evangelista, V., Marfia, S., Sacco, E.: A 3D SMA constitutive model in the framework of finite strain. Int. J. Numer. Methods Eng. 81, 761–785 (2010)

    MATH  Google Scholar 

  16. Francfort, G.A., Mielke, A.: Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595, 55–91 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)

    Article  MATH  Google Scholar 

  18. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  ADS  MATH  Google Scholar 

  19. Frigeri, S., Stefanelli, U.: Existence and time-discretization for the finite-strain Souza–Auricchio constitutive model for shape-memory alloys. Contin. Mech. Thermodyn. 24, 63–67 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Grandi, D., Stefanelli, U.: Finite plasticity in \({\bf P}^\top \!{\bf P}\). Part II: quasistatic evolution and linearization. Submitted (2016)

  21. Green, A.E., Naghdi, P.M.: Some remarks on elastic–plastic deformation at finite strain. Int. J. Eng. Sci. 9, 1219–1229 (1971)

    Article  MATH  Google Scholar 

  22. Gurtin, M.E.: An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158th edn. Academic Press Inc., New York (1981)

    Google Scholar 

  23. Gurtin, M., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  24. Han, W., Reddy, B.D.: Plasticity, Mathematical Theory and Numerical Analysis. Springer, New York (1999)

    MATH  Google Scholar 

  25. Ibrahimbegović, A.: Equivalent spatial and material descriptions of finite deformation elastoplasticity in principal axes. Int. J. Solids Struct. 31, 3027–3040 (1994)

    Article  MATH  Google Scholar 

  26. Ibrahimbegović, A.: Finite elastoplastic deformations of space-curved membranes. Comput. Methods Appl. Mech. Eng. 119, 371–394 (1994)

    Article  ADS  MATH  Google Scholar 

  27. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lee, E.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  ADS  MATH  Google Scholar 

  29. Li, X.: Large strain constitutive modelling and computation for isotropic, creep elastoplastic damage solids. Int. J. Numer. Methods Eng. 38, 841–860 (1995)

    Article  MATH  Google Scholar 

  30. Lion, A.: A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mech. 123, 1–25 (1997)

    Article  MATH  Google Scholar 

  31. Lubarda, V.A.: Duality in constitutive formulation of finite-strain elastoplasticity based on \(F = F_eF_p\) and \(F = F_pF_e\) decompositions. Int. J. Plast. 15, 1277–1290 (1999)

    Article  MATH  Google Scholar 

  32. Mainik, A., Mielke, A.: Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Sci. 19, 221–248 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Mandel, J.: Plasticité Classique et Viscoplasticité, CISM Courses and Lectures, vol. 97. Springer, Berlin (1972)

    Google Scholar 

  34. Miehe, C.: A theory of large-strain isotropic thermoplasticity based on metric transformation tensors. Arch. Appl. Mech. 66, 45–64 (1995)

    ADS  MATH  Google Scholar 

  35. Miehe, C.: A theoretical and computational model for isotropic elastoplastic stress analysis in shells at large strains. Comput. Methods Appl. Mech. Eng. 155, 193–233 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Mielke, A.: Finite elastoplasticity, Lie groups and geodesics on \(\text{ SL }(d)\). In: Newton, P., Weinstein, A., Holmes, P.J. (eds.) Geometry, Dynamics, and Mechanics, pp. 61–90. Springer, New York (2002)

    Chapter  Google Scholar 

  37. Mielke, A.: Existence of minimizers in incremental elasto-plasticity with finite strains. SIAM J. Math. Anal. 36, 384–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mielke, A.: Evolution of rate-independent systems (ch. 6). In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461–559. Elsevier, Amsterdam (2004)

    Chapter  Google Scholar 

  39. Mielke, A., Müller, S.: Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Z. Angew. Math. Mech. 86, 233–250 (2006)

    Article  MATH  Google Scholar 

  40. Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM Control Optim. Calc. Var. 18, 36–80 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mielke, A., Rossi, R., Savaré, G.: Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc. (JEMS), to appear

  42. Mielke, A., Roubíček, T.: Rate-Independent Systems—Theory and Application. Application of Mathematical Science Series. Springer, New York (2015)

    MATH  Google Scholar 

  43. Mielke, A., Roubíček, T., Stefanelli, U.: \(\Gamma \)-limits and relaxations for rate-independent evolutionary problems. Calc. Var. Partial Diff. Equ. 31, 387–416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mielke, A., Stefanelli, U.: Linearized plasticity is the evolutionary \(\Gamma \)-limit of finite plasticity. J. Eur. Math. Soc. (JEMS) 15, 923–948 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mielke, A., Theil, F.: On rate-independent hysteresis models. NoDEA Nonlinear Diff. Equ. Appl. 11, 151–189 (2004)

    MathSciNet  MATH  Google Scholar 

  46. Mühlhaus, H.-B., Aifantis, E.: A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Naghdi, P.M.: A critical review of the state of finite plasticity. J. Appl. Math. Phys. 41, 315–394 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  48. Neff, P.: Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation. Q. Appl. Math. 63, 88–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Neff, P., Chelmiński, K., Alber, H.-D.: Notes on strain gradient plasticity: finite strain covariant modeling and global existence in the infinitesimal rate-independent case. Math. Models Methods Appl. Sci. 19, 307–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Neff, P., Eidel, B., Martin, R. J.: Geometry of logarithmic strain measures in solid mechanics, Arch. Ration. Mech. Anal., to appear. Preprint: arXiv:1505.02203

  51. Neff, P., Ghiba, I.-D.: Comparison of isotropic elasto-plastic models for the plastic metric tensor \(C_p=F^\top _p\!F_p\), In: Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Lecture Notes in Applied and Computational Mechanics, vol. 81, pp. 161–195, Springer, (2016)

  52. Nemat-Nasser, S.: Decomposition of strain measures and their rates in finite deformation elastoplasticity. Int. J. Solids Struct. 15, 155–166 (1979)

    Article  MATH  Google Scholar 

  53. Nemat-Nasser, S.: Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  54. Perić, D., Owen, D.R.J.: A model for large deformation of elasto-viscoplastic solids at finite strains: computational issues. In: Besdo, D., Stein, E. (eds.) Proceedings of the IUTAM Symposium on Finite Inelastic Deformations—Theory and Applications, pp. 299–312. Springer, Berlin (1991)

    Google Scholar 

  55. Perić, D., Owen, D.R.J., Honnor, M.E.: A model for finite strain elasto-plasticity based on logarithmic strains: computational issues. Comp. Methods Appl. Mech. Eng. 94, 35–61 (1992)

    Article  MATH  Google Scholar 

  56. Reina, C., Conti, S.: Kinematic description of crystal plasticity in the finite kinematic framework: a micromechanical understanding of \(F=F_eF_p\). J. Mech. Phys. Solids 67, 40–61 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Reina, C., Schlömerkemper, A.: S. Conti. Derivation of \({F}={F}^e{F}^p\) as the continuum limit of crystalline slip. arXiv:1504.06775

  58. Roubíček, T.: Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems. Nonlinear Anal. 113, 33–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Simo, J.C.: Recent developments in the numerical analysis of plasticity. In: Stein, E. (ed.) Progress in Computational Analysis of Inelastic Structures, pp. 115–173. Springer, Berlin (1993)

    Chapter  Google Scholar 

  60. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity, Interdisciplinary Applied Mathematics, vol. 7. Springer, New York (1998)

    MATH  Google Scholar 

  61. Stefanelli, U.: A variational characterization of rate-independent evolution. Math. Nachr. 282, 1492–1512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Steinmann, P., Miehe, C., Stein, E.: Comparison of different finite deformation inelastic damage models within multiplicative elastoplasticity for ductile metals. Comput. Mech. 13, 458–474 (1994)

    Article  MATH  Google Scholar 

  63. Truesdell, C., Noll, W.: The Nonlinear Field Theories, Handbuch der Physik Band III/3. Springer, Berlin (1965)

    Google Scholar 

  64. Vladimirov, I.V., Pietryga, M.P., Reese, S.: On the modelling of nonlinear kinematic hardening at finite strains with application to springback—comparison of time integration algorithms. Int. J. Numer. Methods Eng. 75, 1–28 (2008)

    Article  MATH  Google Scholar 

  65. Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79, 173–202 (1990)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Grandi.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandi, D., Stefanelli, U. Finite plasticity in \(\varvec{P}^\top \! \varvec{P}\). Part I: constitutive model. Continuum Mech. Thermodyn. 29, 97–116 (2017). https://doi.org/10.1007/s00161-016-0522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0522-1

Keywords

Navigation