Skip to main content
Log in

Existence and stability results for thermoelastic dipolar bodies with double porosity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the theory of thermoelastic dipolar bodies which have a double porosity structure. In contrast with previous papers dedicated to classical elastic bodies, in our context the double porosity structure of the body is influenced by the displacement field, which is consistent with real models. In this setting, we show instability of solution as the initial energy is negative while under an appropriated (and realistic) condition, we prove existence and uniqueness of solution using semi-group theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ames, K.A., Payne, L.E.: Stabilizing solutions of the equations of dynamical linear thermoelasticity backward in time. Stab. Appl. Anal. Contin. Media 1, 243–260 (1991)

    MathSciNet  Google Scholar 

  3. Barenblatt, G.I., Zheltov, I.P.: On the basic equations of seepage of homogeneous liquids in fissured rock. Akad. Nauk SSSR 132, 545–548 (1960)

    MATH  Google Scholar 

  4. Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarletta, M., Straughan, B., Zampoli, V.: Poroacoustic acceleration waves in a Jordan–Darcy–Cattaneo material. Int. J. Non-linear Mech. 52, 8–11 (2013)

    Article  ADS  Google Scholar 

  6. Ciumaşu, G.S.: On finite deformation of elastic dipolar continuum. Bul. Inst. Politeh. Iaşi. Secţ. I. Mat. Mec. Teor. Fiz. 41(45)(3–4), 103–108 (1995)

  7. Costabel, M., Dauge, M., Nicaise, S.: Corner singularities and analytic regularity for linear elliptic systems. Part I: smooth domains. http://hal.archives-ouvertes.fr/hal-00453934/en/ Online version of Chapters 1 to 5 (2010)

  8. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)

    Article  MATH  Google Scholar 

  9. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  10. Fried, E., Gurtin, M.E.: Thermomechanics of the interface between a body and its environment. Contin. Mech. Thermodyn. 19(5), 253–271 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iesan, D.: Thermoelastic Models of Continua. Kluwer Academic, Dordrecht (2004)

    Book  MATH  Google Scholar 

  13. Iesan, D., Quintanilla, R.: On a theory of thermoelastic materials with double porosity structure. J. Therm. Stress. 37, 1017–1036 (2014)

    Article  Google Scholar 

  14. Iovane, G., Passarella, F.: Saint-Venant’s principle in dynamic porous thermoelastic media with memory for heat flux. J. Therm. Stress. 27(11), 983–999 (2004)

    Article  MathSciNet  Google Scholar 

  15. Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermohydro- mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30(24), 1–5 (2003)

    Article  Google Scholar 

  16. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems. Research Notes in Mathematics, vol. 398. Chapman & Hall/CRC, Boca Raton (1999)

    Google Scholar 

  17. Marin, M.: On the minimum principle for dipolar materials with stretch. Nonlinear Anal. Real World Appl. 10(3), 1572–1578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marin, M.: An evolutionary equation in thermoelasticity of dipolar bodies. J. Math. Phys. 40(3), 1391–1399 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Marin, M., Agarwal, R.P., Mahmoud, S.R.: Nonsimple material problems addressed by the Lagrange’s identity. Bound. Value Probl. 2013, Art. no. 135. 1–14 (2013)

  20. Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. Ann. Sci. Univ. Ovidius Serie-Math 22(1), 169–188 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Mindlin, R.D.: Microstrucure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–77 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nicaise, S., Valein, J.: Stabilization of non-homogeneous elastic materials with voids. J. Math. Anal. Appl. 387(2), 1061–1087 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Noll, W.: The Foundations of Mechanics and Thermodynamics. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  24. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pazy, A.: Semigroups of Linear Operators and Applications. Springer, New York (1983)

    MATH  Google Scholar 

  26. Plavšić, M.: Mehanika prostih polarnih kontinuuma. Matematički Institut, Belgrade, Special Editions of the Belgrade Institute of Mathematics, Vol. 13 (1975)

  27. Pride, S.R., Berryman, J.G.: Linear dynamics of double-porosity dual-permeability materials-I. Phys. Rev. E 68, 1–11 (2003)

    Google Scholar 

  28. Scarpetta, E., Svanadze, M., Zampoli, V.: Fundamental solutions in the theory of thermoelasticity for solids with double porosity. J. Therm. Stress. 37(6), 727–748 (2014)

    Article  Google Scholar 

  29. Scarpetta, E., Svanadze, M.: Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity. J. Elast. 120, 67–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. Ann. Sci. Univ. Ovidius Serie-Math. 22(2), 151–175 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)

    Article  MathSciNet  Google Scholar 

  32. Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica 49, 2099–2108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Svanadze, M., De Cicco, S.: Fundamental solutions in the full coupled theory of elasticity for solids with double porosity. Arch. Mech. 65(5), 367–390 (2013)

    MathSciNet  Google Scholar 

  34. Truesdell, C.: A First Course in Rational Continuum Mechanics, 2nd edn. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  35. Wilson, R., Aifantis, E.: On the theory of consolidation with double porosity. Int. J. Eng. Sci. 20, 1009–1035 (1982)

    Article  MATH  Google Scholar 

  36. Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Marin.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Nicaise, S. Existence and stability results for thermoelastic dipolar bodies with double porosity. Continuum Mech. Thermodyn. 28, 1645–1657 (2016). https://doi.org/10.1007/s00161-016-0503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0503-4

Keywords

Navigation