Skip to main content
Log in

A three-fluid approach in bipolar semiconductors with generation–recombination: constitutive laws and Onsager symmetry

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

If electrons (e) and holes (h) in metals or semiconductors are heated to the temperatures \(T_{e}\) and \(T_{h}\) greater than the lattice temperature \(T_{p}\), the electron–phonon interaction causes energy relaxation. In the nonuniform case, a momentum relaxation occurs as well. In view of such an application, a new model based on an asymptotic procedure for solving the kinetic equations of carriers and phonons is proposed, with generation–recombination of electrons and holes, which gives naturally the displaced Maxwellian at the leading order. After that, balance equations for the electron number, hole number, energy densities, and momentum densities are constructed, which constitute now a system of eight equations for the chemical potentials (carriers), the temperatures (carriers and phonons), and the drift velocities (carriers and phonons). In the drift-diffusion approximation the constitutive laws are derived and the Onsager relations recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rossani, A.: Modeling of the non-equilibrium effects by high electric fields in small semiconductor devices. Phys. A 390, 3329–3336 (2011)

    Article  MathSciNet  Google Scholar 

  2. Koponen, I.: Thermalization of an electron–phonon system in a non-equilibrium state characterized by fractal distribution of phonon excitations. Phys. Rev. E 55(6), 349 (1997)

    Article  Google Scholar 

  3. Allen, P.B.: Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59(13), 1460 (1987)

    Article  ADS  Google Scholar 

  4. Rossani, A.: Generalized kinetic theory of electrons and phonons. Phys. A 305, 323 (2002)

    Article  MATH  Google Scholar 

  5. Rossani, A., Spiga, G., Domaingo, A.: Band-trap capture and emission in the generalized kinetic theory of electrons and holes. J. Phys. A 36, 1195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rossani, A., Spiga, G.: Auger effect in the generalized kinetic theory of electrons and holes. J. Math. Phys. 47, 013301 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Rossani, A., Scarfone, A.M.: Generalized kinetic theory of electrons and phonons: models, equilibrium, stability. Phys. B 334, 292 (2003)

    Article  ADS  Google Scholar 

  8. Anile, A.M., Pennisi, S.: Thermodynamic derivation of the hydrodynamical model for charge transport in semiconductors. Phys. Rev. B 46(20), 13186 (1992)

    Article  ADS  MATH  Google Scholar 

  9. Ben Abdallah, N., Degond, P., Genyeis, S.: An energy-transport model for semiconductors derived from the Boltzmann equation. J. Stat. Phys. 84(1–2), 205 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys. 37(7), 3306 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Pergamon Press, Oxford (1981)

    Google Scholar 

  12. Marcowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Spriger, Wien (1990)

    Book  Google Scholar 

  13. Ziman, J.M.: Electrons and Phonons. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  14. Lundstrom, M.: Fundamentals of Carrier Transport. CUP, Cambridge (2000)

    Book  Google Scholar 

  15. Muscato, O.: The Onsager reciprocity principle as a check of consistency for semiconductor carrier transport models. Phys. A 289, 422 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1983)

    MATH  Google Scholar 

  17. Mascali, G.: Maximum entropy principle in relativistic radiation hydrodynamics II: compton and double compton scattering. Contin. Mech. Termodyn. 14(6), 549 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mascali, G.: A hydrodynamical model for silicon semiconductors including crystal heating. Eur. J. Appl. Math. 26, 477 (2015)

    Article  MathSciNet  Google Scholar 

  19. Romano, V., Zwierz, M.: Electron–phonon hydrodynamical model for semiconductors. Z. Angew. Math. Phys. 26, 1111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rossani.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossani, A. A three-fluid approach in bipolar semiconductors with generation–recombination: constitutive laws and Onsager symmetry. Continuum Mech. Thermodyn. 28, 1671–1682 (2016). https://doi.org/10.1007/s00161-016-0500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0500-7

Keywords

Navigation