Skip to main content
Log in

Saturated porous continua in the frame of hybrid description

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A method for modeling fluid–solid interactions in saturated porous media is proposed. The main challenge is the combination of the material and spatial descriptions. The deformation of the solid, which serves as a “container” to the fluid, is studied by following the motion of its material particles, i.e., in Lagrangian description. On the other hand, the motion of the fluid is described in spatial form, i.e., by using a Eulerian approach. However, the solid deforms and this implies a certain difference regarding the standard formulation used in spatial description of fluid mechanics where a fixed grid dissects space into elementary volumes. Here the grid is no longer fixed, and the elementary volumes will follow the deformation of the solid. Moreover, for the solid as well as for the fluid the balance equations are formulated in the current configuration, where interaction forces and couples are taken into account. By using Zhilin’s approach, entropy and temperature are incorporated in the system of equations. Constitutive equations are constructed for both elastic and inelastic components of force and couple stress tensors and interaction force and couple. The constitutive equations for elastic components are found on the basis of the energy balance equation; the constitutive equations for the inelastic components are proposed in accordance with the second law of thermodynamics. Particular emphasis is placed on the constitutive equations of the interaction force and couple, which result in a symmetric form only because of the “hybrid” approach combining the Lagrangian with the Eulerian description. Three possible examples of application of the theory have been presented. For each example, all required assumptions were first stated and discussed and then the complete set of the corresponding equations was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  MATH  Google Scholar 

  2. de Boer R.: Trends in Continuum Mechanics of Porous Media. Springer, Netherlands (2005)

    Book  MATH  Google Scholar 

  3. de Boer R., Ehlers W.: On the problem of fluid- and gas-filled elasto-plastic solids. Int. J. Solids Struct. 22(11), 1231–1242 (1986)

    Article  MATH  Google Scholar 

  4. Loret B., Simoes F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-specied multi-phase biological tissues. Eur. J. Mech. A Solid 24, 757–781 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Wei C.H., Muraleetharan K.K.: A continuum theory of porous media saturated by multiply immiscible fluids: II. Lagrangian description description and variational structure. Int. J. Eng. Sci. 40, 1835–1854 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen R.M.: Compressive porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)

    Article  MATH  Google Scholar 

  7. Bowen R.M.: Incompressive porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  8. Wilmanski K.: Continuum Thermodynamics. Part 1: Foundations. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  9. Anferov S.D., Scul’skiy O.I.: Modeling of fluid filtration through plastically deformed porous medium in the process of extrusion (in Russian). PNRPU Mech. Bull. 2, 29–47 (2014)

    Article  Google Scholar 

  10. Hassanizaden M., Gray W.G.: General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv. Water Resour. 3, 25–40 (1980)

    Article  ADS  Google Scholar 

  11. Nigmatullin B.E.: Foundations of Heterogenious Continuum Mechanics (in Russian). Nauka, Moscow (1978)

    Google Scholar 

  12. Borja R.I.: On mechanical energy and effective stress in saturated and unsaturated porous continua. Int. J. Solids Struct. 43, 1764–1786 (2006)

    Article  MATH  Google Scholar 

  13. Chapelle D., Moireau P.: General coupling of porous flows and hyperelastic formulations—from thermodynamics principles to energy balance and compatible time schemes. Eur. J. Mech. B Fluid. 46, 82–96 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Li C., Borja R.I., Regueiro R.A.: Dynamics of porous media at finite strain. Comput. Methods Appl. Mech. 193, 3837–3870 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vuong A.-T., Yoshihara L., Wall W.A.: A general approach for modeling interacting flow through porous media under finite deformation. Comput. Methods Appl. Mech. 283, 1240–1259 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Arienti M., Hung P., Morano E., Shepherd J.E.: A level set approach to Eulerian–Lagrangian coupling. J. Comput. Phys. 185, 213–251 (2003)

    Article  ADS  MATH  Google Scholar 

  17. Donea J., Giuliani S., Halleux J.P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interaction. Comput. Method. Appl. Mech. 33, 689–723 (1982)

    Article  MATH  Google Scholar 

  18. Hirt C.W., Amsden A.A., Cook J.L.: An arbitraty Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Article  ADS  MATH  Google Scholar 

  19. McGurn M.T., Ruggirello K.P., DesJardin P.E.: An Eulerian–Lagrangian moving immersed interface method for simulation burning solids. J. Comput. Phys. 241, 364–387 (2013)

    Article  ADS  Google Scholar 

  20. Surana K.S., Blackwell B., Powell M., Reddy J.N.: Mathematical models for fluid–solid interaction and their numerical solutions. J. Fluid. Struct. 50, 184–216 (2014)

    Article  ADS  Google Scholar 

  21. Brown, D.L., Popov, P., Efendiev, Y.: Effective equations for fluid-structure interaction with application to poroelacticity: applicable analysis. Int. J. Eng. Sci. 93, 4 (2014) doi:10.1080/00036811.2013.839780

  22. Collins R.E.: Flow of Fluids Through Porous Materials. Reinolds Publishing Corporation, New York (1961)

    Google Scholar 

  23. Kunin I.A.: Kinematics of media with continuously changing topology. Int. J. Theor. Phys. 29(11), 1167–1176 (1990)

    Article  ADS  MATH  Google Scholar 

  24. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  25. Hauke J.: An Intriduction to Fluid Mechanics and Transport Phenomena. Springer, Netherlands (2008)

    Book  MATH  Google Scholar 

  26. Zhilin P.A.: Rational Continuum Mechanics (in Russian). Polytechnic University Publishing House, St.Petersburg (2012)

    Google Scholar 

  27. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description—What are the differences and why do they concern us?. In: Naumenko, K., Aßmus, M. (ed.) Advanced Methods of Continuum Mechanics for Materials and Structures, Springer, Berlin (2016)

  28. Loicyanskii L.G.: Mechanics of Fluids (in Russian). Nauka, Moscow (1987)

    Google Scholar 

  29. Falkovich G.: Fluid Mechanics. A Short Course for Physicists. Cambridge University Press, New York (2011)

    Book  MATH  Google Scholar 

  30. Ivanova E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)

    Article  MATH  Google Scholar 

  31. Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. Mechanics of Generalized Continua., pp. 151–174. Springer, Berlin (2011)

  32. Ivanova E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32, 273–286 (2012)

    MathSciNet  Google Scholar 

  33. Ivanova E.A.: Description of mechanism of thermal conduction and internal damping by means of two component Cosserat continuum. Acta Mech. 225, 757–795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ivanova E.A.: A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech. 226, 697–721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Treugolov I.G.: Moment theory of electromagnetic effects in anisotropic solids. Appl. Math. Mech. 53(6), 992–997 (1989)

    Google Scholar 

  36. Zhilin L.G.: Advanced Problems in Mechanics, vol. 1, 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)

    Google Scholar 

  37. Tiersten H.F.: Coupled magnetomechanical equations for magnetically saturated insulators. J. Math. Phys. 5(9), 1298–1318 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Maugin G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier, Oxford (1988)

    MATH  Google Scholar 

  39. Eringen A.C., Maugin G.A.: Electrodynamics of Continua. Springer, New York (1990)

    Book  Google Scholar 

  40. Fomethe A., Maugin G.A.: Material forces in thermoelastic ferromagnets. Contin. Mech. Thermodyn. 8, 275–292 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Shliomis M.I., Stepanov V.I.: Rotational viscosity of magnetic fluids: contribution of the Brownian and Neel relaxational processes. J. Magn. Magn. Mater. 122, 196–199 (1993)

    Article  ADS  Google Scholar 

  42. Ivanova, E.A., Vilchevskaya, E.N.: Description of thermal and micro-structural processes in generalized continua: Zhilin’s method and its modifications. In: Altenbach, H., Forest, S., Krivtsov, A.M. (eds.) Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions, pp. 179–197. Springer, Berlin (2013)

  43. Vilchevskaya E.N., Ivanova E.A., Altenbach H.: Description of liquid–gas phase transition in the frame of continuum mechanics. Contin. Mech. Thermodyn. 26(2), 221–245 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Zhilin P.A.: Rigid body oscillator: a general model and some results. Acta Mech. 142, 149–193 (2000)

    Article  MATH  Google Scholar 

  45. Truesdell C.: A First Course in Rational Continuum Mechanics. The John Hopkins University, Maryland, Baltimore (1972)

    Google Scholar 

  46. Altenbach H., Naumenko K., Zhilin P.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Zolotukhin A.B., Ursin J.-R.: Introduction to Petroleum Reservoir Engineering. Norwegian Academic Press, Kristiansand (2000)

    Google Scholar 

  48. Lurie A.I.: Nonlinear Theory of Elasticity. Elsevier, Amsterdam (1991)

    Google Scholar 

  49. Babichev A.P.: Physical Quantities: Handbook (in Russian). Energoatomizdat, Moscow (1991)

    Google Scholar 

  50. DeGroot C.H.T., Straatman A.G.: Towards a porous media model of the human lung. Int. J. Eng. Sci. AIP Conf. Proc. 1453, 69–74 (2012)

    Article  ADS  Google Scholar 

  51. Miguel A.F.: Lungs as a natural porous media: architecture, airflow characteristics and transport of suspended particles. In: Delgado, J. M. P. Q. (ed.) Heat and Mass Transfer in Porous Media, pp. 115–138. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  52. Klaas M., Koch E., Schröder W.: Fundamental Medical and Engineering Investigations on Protective Artificial Respiration. Springer, Berlin (2011)

    Book  Google Scholar 

  53. Bazarov I.P.: Thermodynamics. Pergamon Press, New York (1964)

    Google Scholar 

  54. Bower A.F.: Applied Mechanics of Solids. CRC Press, Boca Raton (2010)

    Google Scholar 

  55. Suganthy J.: Plastination using standard S10 technique—our experience in Christian Medical College. J. Anat. Soc. India 61(1), 44–47 (2012)

    Article  Google Scholar 

  56. Landau L.D., Lifshitz E.M.: Theory of Elasticity. Vol. 7. 1st edn. Pergamon Press, Oxford (1959)

    Google Scholar 

  57. Nowacky W.: Thermoelasticity. Pergamon Press, Warsaw (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Brazgina.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazgina, O.V., Ivanova, E.A. & Vilchevskaya, E.N. Saturated porous continua in the frame of hybrid description. Continuum Mech. Thermodyn. 28, 1553–1581 (2016). https://doi.org/10.1007/s00161-016-0495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0495-0

Keywords

Navigation