Skip to main content
Log in

Travelling waves of density for a fourth-gradient model of fluids

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isothermal motions takes then density’s spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid’s critical point, the density profile verifies an Extended Fisher–Kolmogorov equation, allowing kinks, which converges towards the Cahn–Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dzyaloshinsky I.E., Lifshitz E.M., Pitaevsky L.P.: The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. Evans R.: The nature of liquid–vapour interface and other topics in the statistical mechanics of non-uniform classical fluids. Adv. Phys. 28, 143–200 (1979)

    Article  ADS  Google Scholar 

  3. Widom B.: What do we know that van der Waals did not know?. Phys. A 263, 500–515 (1999)

    Article  MathSciNet  Google Scholar 

  4. Rowlinson J.S., Widom B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1984)

    Google Scholar 

  5. Germain P.: The method of the virtual power in continuum mechanics—part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cahn J.W., Hilliard J.E.: Free energy of a nonuniform system, III, Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Article  ADS  Google Scholar 

  7. Maugin G.A.: Nonlocal theories or gradient-type theories—a matter of convenience. Arch. Mech. Arch. Mech. Stosow. 31, 15–26 (1979)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Rosenau P.: Dynamics of nonlinear mass-spring chains near the continuum limit. Phys. Lett. A 118, 222–227 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la d’Alembert”. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 63, 1119–1141 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gouin, H.: Vesicle model with bending energy revisited. Acta Appl. Math. 132, 347–358 (2014). arXiv:1510.04824

  11. Peerlings R.H.J., Geers M.G.D., de Borst R., Brekelmans W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38, 7723–7746 (2001)

    Article  MATH  Google Scholar 

  12. Askes H., Suiker A.S.J., Sluys L.J.: A classification of higher-order strain-gradient models—linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)

    Article  ADS  MATH  Google Scholar 

  13. Bleustein J.L., Green A.E.: Dipolar fluids. Int. J. Eng. Sci. 5, 323–340 (1967)

    Article  MATH  Google Scholar 

  14. Rubin M.B., Rosenau P., Gottlieb O.: Continuum model of dispersion caused by an inherent material characteristic length. J. Appl. Phys. 77, 4054–4063 (1995)

    Article  ADS  MATH  Google Scholar 

  15. Fried E., Gurtin M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jordan P.M., Keiffer R.S., Saccomandi G.: Anomalous propagation of acoustic traveling waves in thermoviscous fluids under the Rubin–Rosenau–Gottlieb theory of dispersive media. Wave Mot. 51, 382–388 (2014)

    Article  MathSciNet  Google Scholar 

  17. Truesdell C., Noll W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  18. Gouin, H.: Thermodynamic form of the equation of motion for perfect fluids of grade n. Comptes Rend. Acad. Sci. Paris 305 II, 833–839 (1987). arXiv:1006.0802

  19. Gărăjeu, M., Gouin, H., Saccomandi, G.: Scaling Navier–Stokes equation in nanotubes. Phys. Fluids 25, 082003 (2013). arXiv:1311.2484

  20. Rocard Y.: Thermodynamique. Masson, Paris (1952)

    MATH  Google Scholar 

  21. Israelachvili J.: Intermolecular Forces. Academic Press, New York (1992)

    Google Scholar 

  22. Gouin, H.: Energy of interaction between solid surfaces and liquids. J. Phys. Chem. B 102, 1212–1218 (1998). arXiv:0801.4481

  23. Schwartz L.: Théorie des Distributions, Ch. 3. Hermann, Paris (1966)

    Google Scholar 

  24. Gouin, H.: The d’Alembert–Lagrange principle for gradient theories and boundary conditions. In: Ruggeri, T., Sammartino, M. (Eds.), Asymptotic methods in nonlinear wave phenomena, pp. 79–95. World Scientific, Singapore (2007). arXiv:0801.2098

  25. Mecke M., Winkelmann J., Fischer J.: Molecular dynamics simulation of the liquid–vapor interface: The Lennard-Jones fluid. J. Chem. Phys. 107, 9264–9270 (1997)

    Article  ADS  Google Scholar 

  26. Swift J.B., Hohenberg P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  ADS  Google Scholar 

  27. Hamaker H.C.: The London-van der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    Article  ADS  Google Scholar 

  28. Weast, R.C. (Ed.): Handbook of Chemistry and Physics, 65th edn. CRC Press, Boca Raton (1984–1985)

  29. Gouin, H.: Liquid nanofilms. A mechanical model for the disjoining pressure. Int. J. Eng. Sci. 47, 691–699 (2009). arXiv:1510.04824

  30. Lin C.C.: A new variational principle for isoenergetic flows. Quat. Appl. Math. 9, 421–423 (1952)

    MATH  Google Scholar 

  31. Seliger R.L., Whitham G.B.: Variational principle in continuum mechanics. Proc. R. Soc. London A 305, 1–25 (1968)

    Article  ADS  Google Scholar 

  32. Serrin J.: Mathematical principles of classical fluid mechanics. In: Flügge, S. Encyclopedia of Physics. VIII/1, Springer, Berlin (1960)

    Google Scholar 

  33. Dell’Isola, F., Gavrilyuk, S.: Variational Models and Methods in Solid and Fluid Mechanics, Courses and Lectures 535, CISM, Springer, Berlin (2012)

  34. Peletier L.A., Troy W.E.: Spatial Patterns Higher Order Models in Physics and Mechanics. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  35. Chaparova J.V., Peletier L.A., Tersian S.A.: Existence and nonexistence of nontrivial solutions of semilinear fourth- and sixth-order differential equations. Adv. Differ. Equ. 8, 1237–1258 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Widom B.: Fundamental problems in statistical mechanics III. In: Cohen, E.G.D. (ed.) Critical Phenomena, pp. 1–45. North-Holland, Amsterdam (1975)

    Google Scholar 

  37. Truskinovsky L.: Kinks versus shocks. In: Fosdick, R., Dunn, E., Slemrod, M. (eds.) Shock Induced Transitions and Phase Structures in General Media. IMA Vol. 52, pp. 185–229. Springer, Berlin (1993)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Gouin.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouin, H., Saccomandi, G. Travelling waves of density for a fourth-gradient model of fluids. Continuum Mech. Thermodyn. 28, 1511–1523 (2016). https://doi.org/10.1007/s00161-016-0492-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0492-3

Keywords

Navigation