Skip to main content
Log in

Constitutive equations for an electroactive polymer

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Ionic electroactive polymers can be used as sensors or actuators. For this purpose, a thin film of polyelectrolyte is saturated with a solvent and sandwiched between two platinum electrodes. The solvent causes a complete dissociation of the polymer and the release of small cations. The application of an electric field across the thickness results in the bending of the strip and vice versa. The material is modeled by a two-phase continuous medium. The solid phase, constituted by the polymer backbone inlaid with anions, is depicted as a deformable porous media. The liquid phase is composed of the free cations and the solvent (usually water). We used a coarse grain model. The conservation laws of this system have been established in a previous work. The entropy balance law and the thermodynamic relations are first written for each phase and then for the complete material using a statistical average technique and the material derivative concept. One deduces the entropy production. Identifying generalized forces and fluxes provides the constitutive equations of the whole system: the stress–strain relations which satisfy a Kelvin–Voigt model, generalized Fourier’s and Darcy’s laws and the Nernst–Planck equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tixier M., Pouget J.: Conservation laws of an electro-active polymer. Continu. Mech. Thermodyn. 26(4), 465–481 (2014). doi:10.1007/s00161-013-0314-9

    Article  ADS  MathSciNet  Google Scholar 

  2. Nemat-Nasser S., Li J.: Electromechanical response of ionic polymers metal composites. J. Appl. Phys. 87, 3321–3331 (2000)

    Article  ADS  Google Scholar 

  3. Nemat-Nasser S.: Micro-mechanics of actuator of ionic polymer-metal composites. J. Appl. Phys. 92, 2899–2915 (2002)

    Article  ADS  Google Scholar 

  4. DeGennes P.G., Okumura K., Shahinpoor M., Kim K.J.: Mechanoelectric effect in ionic gels. Europhys. Lett. 50, 513–518 (2000)

    Article  ADS  Google Scholar 

  5. Segalman, D., Witkowsky, W., Adolf, D., Shahinpoor, M.: Electrically controlled Polymeric muscles as Active Materials Used in Adaptive Structures. In: Proceedings of ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures (1991)

  6. Shahinpoor M.: Continuum electromechanics of ionic polymers gels as artificial muscles for robotic applications. Smart Mater. Struct. Int. J. 3, 367–372 (1994)

    Article  ADS  Google Scholar 

  7. Shahinpoor M., Bar-Cohen Y., Simpson J.O., Smith J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a Review. Smart Mater. Struct. 7, R15–R30 (1998)

    Article  ADS  Google Scholar 

  8. Futerko P., Hsing I.M.: Thermodynamics of water uptake in perfluorosulfonic acid membranes. J. Electrochem. Soc. 146(6), 2049–2053 (1999)

    Article  Google Scholar 

  9. Nigmatulin R.I.: Spatial averaging in the mechanics of heterogeneous and dispersed systems. Int. J. Multiph. Flow 5, 353–385 (1979)

    Article  MATH  Google Scholar 

  10. Nigmatulin R.I.: Dynamics of Multiphase Media, Multiphaseols 1 and 2. Hemisphere, New-York (1990)

    Google Scholar 

  11. Drew D.A.: Mathematical modeling of two-phase flows. Ann. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  ADS  Google Scholar 

  12. Drew D.A., Passman S.L.: Theory of Multicomponents Fluids. Springer, New-York (1998)

    Google Scholar 

  13. Ishii M., Hibiki T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New-York (2006)

    Book  MATH  Google Scholar 

  14. Lhuillier D.: A mean-field description of two-phase flows with phase changes. Int. J. Multiph. Flow 29, 511–525 (2003)

    Article  MATH  Google Scholar 

  15. De Groot S.R., Mazur P.: Non-Equilibrium Thermodynamics. North-Holland publishing company, Amsterdam (1962)

    MATH  Google Scholar 

  16. Diu B., Guthmann C., Lederer D., Roulet B.: Thermodynamique. Hermann, Paris (2007)

    Google Scholar 

  17. Heitner-Wirguin C.: Recent advances in perfluorinated ionomer membranes: structure, properties and applications. J. Membr. Sci. 120, 1–33 (1996)

    Article  Google Scholar 

  18. Gebel G.: Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41, 5829–5838 (2000)

    Article  Google Scholar 

  19. Cappadonia M., Erning J., Stimming U.: Proton conduction of Nafion@ 117 membrane between 140 K and room temperature. J. Electroanal. Chem. 376, 189–193 (1994)

    Article  Google Scholar 

  20. Choi P., Jalani N.H., Datta R.: Thermodynamics and proton transport in Nafion I. Membrane swelling, sorption and ion-exchange equilibrium. J. Electrochem. Soc. 152, 84–89 (2005)

    Article  Google Scholar 

  21. Silberstein M.N., Boyce M.C.: Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading. J. Power Sources 195, 5692–5706 (2010)

    Article  Google Scholar 

  22. Barclay Satterfield M., Benziger J.B.: Viscoelastic properties of Nafion at elevated temperature and humidity. J. Polym. Sci. Polym. Phys. 47, 11–24 (2009)

    Article  Google Scholar 

  23. Ferry J.D.: Viscoelastic Properties of Polymers. 2nd edn. John Wiley and Sons, Inc., New York (1970)

    Google Scholar 

  24. Kundu S., Simon L.C., Fowler M., Grot S.: Mechanical properties of Nafion electrolyte membranes under hydrated conditions. Polymer 46, 11707–11715 (2005)

    Article  Google Scholar 

  25. F. BauerDenneler, S., Willert-Porada, M.: Influence of Temperature and Humidity on the Mechanical Properties of Nafion 117 Polymer Electrolyte Membrane. J. Polym. Sci. Polym. Phys. 43, 786–795 (2005)

  26. Silberstein M.N., Pillai P.V., Boyce M.C.: Biaxial elastic-viscoplastic behavior of Nafion membranes. Polymer 52, 529–539 (2011)

    Article  Google Scholar 

  27. Silberstein N.N.: Mechanics of Proton Exchange Membranes: Time, Temperature and Hydration Dependence of the Stress–Strain Behavior of Persulfonated Polytetrafluoroethylene. MS Thesis, Massachusetts Institut of Technology, Cambridge, MA (2008)

  28. Strobl G.R.: The Physics of Polymers. Springer, Berlin (1997)

    Book  Google Scholar 

  29. Combette P., Ernoult I.: Pysique des polymères. Hermann, Paris (2006)

    Google Scholar 

  30. Lakshminarayanaiah N.: Transport Phenomena in Membranes. Academic Press, New-York (1969)

    Google Scholar 

  31. Schlögl R.: Stofftransport Durch Membranen. Steinkopf, Darmstadt (1964)

    Google Scholar 

  32. Schlögl R.: Membrane permeation in systems far from equilibrium. Ber. Bunsenges. Phys. Chem. 70, 400 (1966)

    Google Scholar 

  33. Zawodsinski T.A., Neeman M., Sillerud L.O., Gottesfeld S.: Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. J. Phys. Chem. 95, 6040–6044 (1991)

    Article  Google Scholar 

  34. Kreuer K.D.: On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001)

    Article  Google Scholar 

  35. Farinholt K., Leo D.J.: Modeling of electromechanical charge sensing in ionic polymer transducers. Mech. Mater. 36, 421–433 (2004)

    Article  Google Scholar 

  36. Pineri, M., Duplessix, R., Volino, F.: Neutron studies of perfluorosulfonated polymer structures. In: Eisenberg, A., Yeager, H.L. (eds.). Perfluorinated Ionomer Membranes, 180, pp. 249–282. American Chemical Society, ACS Symposium Series, Washington, DC (1982)

  37. Biot M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Grimshaw P.E., Nussbaum J.H., Grodzinsky A.J., Yarmush M.L.: Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J. Chem. Phys. 93(6), 4462–4472 (1990)

    Article  ADS  Google Scholar 

  39. Coussy O.: Mechanics of Porous Continua. Wiley, Chichester (1995)

    MATH  Google Scholar 

  40. Biot M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain. Mechanics of porous solids and thermonuclear diffusion. Int. J. Solids Struct. 13, 79–597 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. Coussy O.: Thermomechanics of saturated porous solids in finite deformation. Eur. J. Mech. A Solids 8(1), 1–14 (1989)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Tixier.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tixier, M., Pouget, J. Constitutive equations for an electroactive polymer. Continuum Mech. Thermodyn. 28, 1071–1091 (2016). https://doi.org/10.1007/s00161-015-0463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0463-0

Keywords

Navigation