Skip to main content
Log in

Some new extensions to multi-mechanism models for plastic and viscoplastic material behavior under small strains

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Multi-mechanism models (MM models) have become an important tool for modeling complex material behavior. In particular, two-mechanism models are used. They are applied to model ratcheting in metal plasticity as well as steel behavior during phase transformations. We consider a small-deformation setting. The characteristic trait of multi-mechanism models is the additive decomposition of the inelastic (e.g., plastic or viscoplastic) strain into several parts. These parts are sometimes called mechanisms. In comparison with rheological models, the mechanisms can interact with each other. This leads to new properties and allows to describe important observable effects. Up to now, each mechanism has one kinematic internal variable. As a new feature, we develop multi-mechanism models (in series) with several kinematic variables for each mechanism as well as with several isotropic variables for each flow criterion. We describe this complex situation by three structural matrices which express the mutual relations between mechanisms, flow criteria, kinematic, and isotropic variables. The well-known Chaboche model with a unique inelastic strain and several kinematic variables represents a special case of these general multi-mechanism models. In this work, we also present a matrix-based approach for these new complex MM models. The presented models can form the basis for developing numerical algorithms for simulation and parameter identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Karim M.: Modified kinematic hardening rule for simulations of ratcheting. Int. J. Plast. 25, 1560–1587 (2009). doi:10.1016/j.ijplas.2008.10.004

    Article  MATH  Google Scholar 

  2. Abdel-Karim M.: An evaluation for several kinematic hardening rules on prediction of multi-axial stress-controlled ratcheting. Int. J. Plast. 26(5), 711–730 (2010). doi:10.1016/j.ijplas.2009.10.002

    Article  MATH  Google Scholar 

  3. Aeby-Gautier, E., Cailletaud, G.: N-phase modeling applied to phase transformations in steels: a coupled kinetics-mechanics approach. In: International Conference on Heterogeneous Material Mechanics ICHMM-2004. Chongqing, China (2004)

  4. Bari S., Hassan T.: An advancement in cyclic plasticity modelling for multiaxial ratcheting simulation. Int. J. Plast. 18, 873–894 (2002). doi:10.1016/S0749-6419(01)00012-2

    Article  MATH  Google Scholar 

  5. Bertram A.: Elasticity and Plasticity of Large Deformations: An Introduction. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  6. Bertram, A., Glüge, R.: Festkörpermechanik. Otto-von-Guericke-Universitt Magdeburg (2013)

  7. Besson J.: Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms. Int. J. Plast. 25, 2204–2221 (2009). doi:10.1016/j.ijplas.2009.03.001

    Article  Google Scholar 

  8. Besson J., Cailletaud G., Chaboche J.L., Forest S.: Mécanique Non Linéaire des Matériaux. Hermes Science Europe Ltd, Paris (2001)

    Google Scholar 

  9. Burlet H., Cailletaud G.: Modeling of cyclic plasticity in finite element codes. In: Desai, C. (ed.) 2nd International Conference on Constitutive Laws for Engineering Materials: Theory and Applications, pp. 1157–1164. Elsevier, Tucson (1987)

    Google Scholar 

  10. Cailletaud G., Saï K.: Study of plastic/viscoplastic models with various inelastic mechanisms. Int. J. Plast. 11, 991–1005 (1995). doi:10.1016/S0749-6419(95)00040-2

    Article  MATH  Google Scholar 

  11. Chaboche J.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008). doi:10.1016/j.ijplas.2008.03.009

    Article  MATH  Google Scholar 

  12. Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variables. J. Chem. Phys. 47(2), 597–613 (1967). doi:10.1063/1.1711937

    Article  ADS  Google Scholar 

  13. Contesti E., Cailletaud G.: Description of creep-plasticity interaction with non-unified constitutive equations: application to an austenitic steel. Nucl. Eng. Des. 116, 265–280 (1989). doi:10.1016/0029-5493(89)90087-3

    Article  Google Scholar 

  14. Desmorat R.: Non-saturating nonlinear kinematic hardening laws. C. R. Méc. 338(3), 146–151 (2010). doi:10.1016/j.crme.2010.02.007

    Article  MATH  Google Scholar 

  15. Hassan T., Taleb L., Krishna S.: Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plast. 24, 1863–1889 (2008). doi:10.1016/j.ijplas.2008.04.008

    Article  MATH  Google Scholar 

  16. Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  17. Helm D., Haupt P.: Shape memory behavior: modeling within continuum thermomechanics. Int. J. Solids Struct. 40, 827 (2003). doi:10.1016/S0020-7683(02)00621-2

    Article  MATH  Google Scholar 

  18. Krawietz A.: Materialtheorie: Mathematische Beschreibung des phänomenologischen thermomechanischen Verhaltens. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  19. Kröger, N., Böhm, M., Wolff, M.: Viskoelastisches Zwei-Mechanismen-Modell für einen eindimensionalen Stab. Tech. Rep. 12-02, Berichte aus der Technomathematik, FB 3, Universität Bremen (2012)

  20. Kröger, N.H.: Multi-mechanism models: theory and applications. Ph.D. thesis, Universität Bremen, Germany (2013)

  21. Kröger N.H., Böhm M., Wolff M.: Viscoelasticity within the framework of isothermal two-mechanism models. Comput. Mater. Sci. 64, 30–33 (2012). doi:10.1016/j.commatsci.2012.04.017

    Article  Google Scholar 

  22. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  23. Mahnken R., Schneidt A., Antretter T.: Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel. Int. J. Plast. 25, 183–204 (2009). doi:10.1016/j.ijplas.2008.03.005

    Article  MATH  Google Scholar 

  24. Mahnken R., Schneidt A., Antretter T., Ehlenbröker U., Wolff M.: Multi-scale modeling of bainitic phase transformation in multi-variant polycrystalline low alloy steels. Int. J. Solids Struct. 54, 156–171 (2015)

    Article  Google Scholar 

  25. Mahnken R., Wolff M., Cheng C.: A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation. Int. J. Solids Struct. 50, 3045–3066 (2013)

    Article  Google Scholar 

  26. Mahnken R., Wolff M., Schneidt A., Böhm M.: Multi-phase transformations at large strains - thermodynamic framework and simulation. Int. J. Plast. 39, 1–26 (2012)

    Article  Google Scholar 

  27. Maugin G.: The Thermodynamics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  28. Nouailhas D., Cailletaud G., Policella H., Marquis D., Dufailly J., Lieurade H., Ribes A., Bollinger E.: On the description of cyclic hardening and initial cold working. Eng. Fract. Mech. 21(4), 887–895 (1985)

    Article  Google Scholar 

  29. Palmov V.A.: Vibrations of elasto-plastic bodies. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  30. Palmov V.A.: Theory of Defining Equations in Nonlinear Thermodynamics of Deformable Bodies (in Russian). St. Petersburg State Polytechnical University, St. Petersburg (2008)

    Google Scholar 

  31. Regrain C., Laiarinandrasana L., Toillon S., Saï K.: Multi-mechanism models for semi-crystalline polymer: constitutive relations and finite element implementation. Int. J. Plast. 25, 1253–1279 (2009). doi:10.1016/j.ijplas.2008.09.010

    Article  MATH  Google Scholar 

  32. Saï, K.: Modèles à grand nombre de variables internes et méthodes numériques associées. Ph.D. thesis, National Ecole des Mines de Paris (1993)

  33. Saï K.: Multi-mechanism models: present state and future trends. Int. J. Plast. 27, 250–281 (2011). doi:10.1016/j.ijplas.2010.05.003

    Article  Google Scholar 

  34. Saï K., Cailletaud G.: Multi-mechanism models for the description of ratcheting: effect of the scale transition rule and of the coupling between hardening variables. Int. J. Plast. 23, 1589–1617 (2007). doi:10.1016/j.ijplas.2007.01.011

    Article  MATH  Google Scholar 

  35. Saï K., Laiarinandrasana L., Naceur I.B., Besson J., Jeridi M., Cailletaud G.: Multi-mechanism damage-plasticity model for semi-crystalline polymer: creep damage of notched specimen of pa6. Mater. Sci. Eng. A 528, 1087–1093 (2011). doi:10.1016/j.msea.2010.09.071

    Article  Google Scholar 

  36. Saï K., Taleb L., Cailletaud G.: Numerical simulation of the anisotropic behavior of 2017 aluminum alloy. Comput. Mater. Sci. 65, 48–57 (2012)

    Article  Google Scholar 

  37. Shen X., Xia Z., Ellyin F.: Cyclic deformation behaviour of an epoxy polymer. part i: experimental investigation. Polym. Eng. Sci. 44(12), 2240–2246 (2004)

    Article  Google Scholar 

  38. Taleb L.: About the cyclic accumulation of the inelastic strain observed in metals subjected to cyclic stress control. Int. J. Plast. 43, 1–19 (2013)

    Article  Google Scholar 

  39. Taleb L., Cailletaud G.: An updated version of the multimechanism model for cyclic plasticity. Int. J. Plast. 26(6), 859–874 (2010). doi:10.1016/j.ijplas.2009.11.002

    Article  MATH  Google Scholar 

  40. Taleb, L., Cailletaud, G.: Cyclic accumulation of the inelastic strain in the 304L SS under stress control at room temperature: ratcheting or creep? Int. J. Plast. 27, 1936–1958 (2011). doi:10.1016/j.ijplas.2011.02.001

  41. Taleb L., Cailletaud G., Blaj L.: Numerical simulation of complex ratcheting tests with a multi-mechanism model type. Int. J. Plast. 22, 724–753 (2006). doi:10.1016/j.ijplas.2005.05.003

    Article  MATH  Google Scholar 

  42. Taleb L., Hauet A.: Multiscale experimental investigations about the cyclic behavior of the 304L SS. Int. J. Plast. 25, 1359–1385 (2009). doi:10.1016/j.ijplas.2008.09.004

    Article  MATH  Google Scholar 

  43. Tao G., Xia Z.: Material behaviour: ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polym. Test. 26, 451–460 (2007). doi:10.1016/j.polymertesting.2006.12.010

    Article  Google Scholar 

  44. Turki M., Ben Naceur I., Makni M., Rouis J., Saï K.: Mechanical and damage behaviour of mortar-rubber aggregates mixtures: experiments and simulations. Mater. Struct. 42, 1313–1324 (2009). doi:10.1617/s11527-008-9451-1

    Article  Google Scholar 

  45. Videau, J.C., Cailletaud, G., Pineau, A.: Modélisation des effets mécaniques des transformations de phases pour le calcul de structures. J. de Physique IV, Colloque C3, supplément au J. de Physique III, 4 p. 227 (1994). http://hal.archives-ouvertes.fr/docs/00/25/25/28/PDF/ajp-jp4199404C331.pdf

  46. Wolff, M., Böhm, M.: Two-mechanism models and modelling of creep. Proceedings of the 3rd International Conference on Nonlinear Dynamics, Charkiw, Ukraine (2010)

  47. Wolff M., Böhm M., Bökenheide S., Kröger N.: Two-mechanism approach in thermo-viscoelasticity with internal variables. Tech. Mech. 32(2–5), 608–621 (2012)

    Google Scholar 

  48. Wolff M., Böhm M., Bökenheide S., Lammers D., Linke T.: An implicit algorithm to verify creep and trip behavior of steel using uniaxial experiments. Z. Angew. Math. Mech. 92, 355–379 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wolff M., Böhm M., Helm D.: Material behavior of steel–modeling of complex phenomena and thermodynamic consistency. Int. J. Plast. 24, 746–774 (2008). doi:10.1016/j.ijplas.2007.07.005

    Article  MATH  Google Scholar 

  50. Wolff M., Böhm M., Mahnken R., Suhr B.: Implementation of an algorithm for general material behaviour of steel taking interaction of plasticity and transformation-induced plasticity into account. Int. J. Numer. Methods Eng. 87, 1183–1206 (2011)

    Article  MATH  Google Scholar 

  51. Wolff, M., Böhm, M., Taleb, L.: Two-mechanism models with plastic mechanisms—modelling in continuum-mechanical framework. Tech. Rep. 10-05, Berichte aus der Technomathematik, FB 3, Universität Bremen (2010)

  52. Wolff M., Böhm M., Taleb L.: Thermodynamic consistency of two-mechanism models in the non-isothermal case. Tech. Mech. 31, 58–80 (2011)

    Google Scholar 

  53. Wolff, M., Bökenheide, S., Schlasche, J., Büsing, D., Karsch, T., Böhm, M., Zoch, H.W.: An extended approach to multi-mechanism models in plasticity - theory and parameter identification. Tech. Rep. 13-06, Berichte aus der Technomathematik, FB 3, Universität Bremen (2013)

  54. Wolff M., Taleb L.: Consistency for two multi-mechanism models in isothermal plasticity. Int. J. Plast. 24, 2059–2083 (2008). doi:10.1016/j.ijplas.2008.03.001

    Article  MATH  Google Scholar 

  55. Xia Z., Shen X., Ellyin F.: An assessment of nonlinearly viscoelastic constitutive models for cyclic loading: the effect of a general loading/unloading rule. Mech. Time Depend. Mater. 9, 281–300 (2006). doi:10.1007/s11043-006-9004-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wolff.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolff, M., Bökenheide, S. & Böhm, M. Some new extensions to multi-mechanism models for plastic and viscoplastic material behavior under small strains. Continuum Mech. Thermodyn. 28, 821–852 (2016). https://doi.org/10.1007/s00161-015-0418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0418-5

Keywords

Navigation