Skip to main content
Log in

Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We illustrate a numerical tool for analyzing plane arches such as those frequently used in historical masonry heritage. It is based on a refined elastic mechanical model derived from the isogeometric approach. In particular, geometry and displacements are modeled by means of non-uniform rational B-splines. After a brief introduction, outlining the basic assumptions of this approach and the corresponding modeling choices, several numerical applications to arches, which are typical of masonry structures, show the performance of this novel technique. These are discussed in detail to emphasize the advantage and potential developments of isogeometric analysis in the field of structural analysis of historical masonry buildings with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes T.J.R., Cottrell J.A., Bazilevs Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Cottrell J.A., Hughes T.J.R., Bazilevs Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  Google Scholar 

  3. Hughes T.J.R., Reali A., Sangalli G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 301–313 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Aristodemo M.: A high continuity finite element model for two-dimensional elastic structures. Comput. Struct. 21, 987–993 (1985)

    Article  MATH  Google Scholar 

  5. Bilotta A., Formica G., Turco E.: Performance of a high-continuity finite element in three-dimensional elasticity. Commun. Numer. Methods Eng. 26(9), 1155–1175 (2010)

    MATH  Google Scholar 

  6. Benedetti A., Tralli A.M.: A new hybrid F.E. model for arbitrarily curved beam—I. Linear analysis. Comput. Struct. 33(6), 1437–1449 (1989)

    Article  MATH  Google Scholar 

  7. Echter R., Bischoff M.: Numerical efficiency, locking and unlocking of NURBS finite elements. Comput. Methods Appl. Mech. Eng. 199(5–8), 374–382 (2010)

    Article  ADS  MATH  Google Scholar 

  8. Aristodemo M., Turco E.: Boundary element discretization of plane elasticity and plate bending problems. Int. J. Numer. Methods Eng. 37, 965–987 (1994)

    Article  MATH  Google Scholar 

  9. Turco E., Aristodemo M.: A three-dimensional B-spline boundary element. Comput. Methods Appl. Mech. Eng. 155, 119–128 (1998)

    Article  ADS  MATH  Google Scholar 

  10. Benson D.J., Bazilevs Y., Hsu M.C., Hughes T.J.R.: Isogeometric shell analysis: the Reissner–Mindlin shell. Comput. Methods Appl. Mech. Eng. 199, 276–289 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Benson D.J., Bazilevs Y., Hsu M.-C., Hughes T.J.R.: A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200(13–16), 1367–1378 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Kiendl J., Bletzinger K.-U., Linhard J., Wüchner R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Auricchio F., Beirão da Veiga L., Hughes T.J.R., Reali A., Sangalli G.: Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Eng. 249–252, 2–14 (2012)

    Article  MathSciNet  Google Scholar 

  14. Auricchio F., Beirão da Veiga L., Kiendl J., Lovadina C., Reali A.: Locking-free isogeometric collocation methods for spatial Timoshenko rods. Comput. Methods Appl. Mech. Eng. 263, 113–126 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bouclier R., Elguedj T., Combescure A.: Locking free isogeometric formulations of curved thick beams. Comput. Methods Appl. Mech. Eng. 245–246, 144–162 (2012)

    Article  MathSciNet  Google Scholar 

  16. Greco L., Cuomo M.: B-Spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  17. Greco L., Cuomo M.: An implicit G 1 multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Beirão da Veiga L., Lovadina C., Reali A.: Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods. Comput. Methods Appl. Mech. Eng. 241–244, 38–51 (2012)

    Article  MathSciNet  Google Scholar 

  19. Cazzani, A., Malagù, Stochino, F., Turco, E.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids (2014, in press)

  20. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane curved beams. Math. Mech. Solids. doi:10.1177/1081286514531265 (2014)

  21. Pignataro M., Luongo A.: Asymmetric interactive buckling of thin-walled columns with initial imperfections. Thin-Walled Struct. 5(5), 365–382 (1987)

    Article  Google Scholar 

  22. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Luongo A.: On the amplitude modulation and localization phenomena in interactive buckling problems. Int. J. Solids Struct. 27(15), 1943–1954 (1991)

    Article  MATH  Google Scholar 

  24. Pignataro M., Luongo A., Rizzi N.: On the effect of the local overall interaction on the postbuckling of uniformly compressed channels. Thin-Walled Struct. 3(4), 293–321 (1985)

    Article  Google Scholar 

  25. Piegl L., Tiller W.: The NURBS Book, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  26. Heyman J.: The stone skeleton. Int. J. Solids Struct. 2, 249–279 (1966)

    Article  Google Scholar 

  27. Heyman J.: The safety of masonry arches. Int. J. Mech. Sci. 11, 363–385 (1969)

    Article  Google Scholar 

  28. Heyman J.: The Masonry Arch. Hellis Horwood, Chichester (1982)

    Google Scholar 

  29. Roca P., Cervera M., Gariup G., Pela L.: Structural analysis of masonry historical constructions. Eng. Struct. 17, 299–325 (2007)

    MATH  Google Scholar 

  30. Tralli, A., Alessandri, C., Milani, G.: Computational methods for masonry vaults: a review of recent results. Open J. Civ. Eng. 8, 272–287 (2014)

  31. de Falco C., Reali A., Vazquez R.: GeoPDEs: a research tool for isogeometric analysis of PDEs. Adv. Eng. Softw. 42(12), 1020–1034 (2011)

    Article  MATH  Google Scholar 

  32. Carandell J.M., Vivas P.: La Pedrera: A Work of Total Art. Triangle Postals, Barcelona (2002)

    Google Scholar 

  33. Huerta S.: Structural design in the work of Gaudí. Archit. Sci. Rev. 49, 324–339 (2006)

    Article  Google Scholar 

  34. Benvenuto E.: An Introduction to the History of Structural Mechanics. Part II: Vaulted Structures and Elastic Systems. Springer, New York (1991)

    Book  MATH  Google Scholar 

  35. Huerta, S.: Mechanics of masonry vaults: the equilibrium approach. In: Lourenço, P.B., Roca, P. (eds.) Historical Constructions, pp. 47–69. Guimarães (2001)

  36. Como M.: Statics of Historic Masonry Constructions. Springer, Berlin (2013)

    Book  Google Scholar 

  37. Chiozzi, A., Malagù, M., Tralli, A., Cazzani, A.: Isogeometric analysis of masonry arches: a simple applicative program (2014, submitted to J. Comput. Civil Eng.)

  38. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik. 1(16) (2013). doi:10.1002/zamm.201300028

  39. Rinaldi A.: A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)

    Article  Google Scholar 

  40. Rinaldi, A.: Statistical model with two order parameters for ductile and statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics), 83, 046126(10) (2011)

  41. Wang, Y., Zhang, T.: Finite element model updating using estimation of distribution algorithms. In: The 6th International Conference on Structural Health Monitoring of Intelligent Infrastructure (20013)

  42. Wang, Y., Hao, H.: Damage identification scheme based on compressive sensing J. Comput. Civil Eng. (2014). doi:10.1061/(ASCE)CP.1943-5487.0000324

  43. Eremeyev V.A., Pietraszkiewicz W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yeremeyev V.A., Freidin A.B., Sharipova L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007)

    Article  MathSciNet  Google Scholar 

  45. Eremeev V.A., Freidin A.B., Sharipova L.L.: Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Dokl. Phys. 48(7), 359–363 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  46. dell’Isola F., Romano A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11–12), 1459–1468 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. D’Annibale F., Luongo A.: A damage constitutive model for sliding friction coupled to wear. Contin. Mech. Thermodyn. 25(2–4), 503–522 (2013)

    Article  ADS  Google Scholar 

  48. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid-permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of cauchy cuts in n-th gradient continua: approach á la D’Alembert. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 63(6), 1119–1141 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. Comptes Rendus de l’Academie de Sciences-Serie IIb: Mecanique, Physique, Chimie, Astronomie 321, 303–308 (1995)

    MATH  Google Scholar 

  51. Federico S., Grillo A., Imatani S., Giaquinta G., Herzog W.: An energetic approach to the analysis of anisotropic hyperelastic materials. Int. J. Eng. Sci. 46, 164–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Misra A.: Mechanistic model for contact between rough surfaces. J. Eng. Mech. 123(5), 475–484 (1997)

    Article  Google Scholar 

  53. Roveri N., Carcaterra A.: Damage detection in structures under travelling loads by the Hilbert–Huang transform. Mech. Syst. Signal Process. 28, 128–144 (2012)

    Article  ADS  Google Scholar 

  54. Ferretti M., Piccardo G.: Dynamic modeling of taut strings carrying a traveling mass. Contin. Mech. Thermodyn. 25(2–4), 469–488 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  55. Contro R., Poggi C., Cazzani A.: Numerical analysis of fire effects on beam structures. Eng. Comput. 5, 53–58 (1988)

    Article  Google Scholar 

  56. Cazzani A., Contro R., Corradi L.: On the evaluation of the shakedown boundary for temperature-dependent elastic properties. Eur. J. Mech. A/Solids 11, 539–550 (1992)

    MATH  Google Scholar 

  57. Andreaus U., Baragatti P.: Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J. Sound Vib. 330(4), 721–742 (2011)

    Article  ADS  Google Scholar 

  58. Cazzani A., Rovati M.: Sensitivity analysis and optimum design of elastic-plastic structural systems. Meccanica 26, 173–178 (1991)

    Article  MATH  Google Scholar 

  59. Turco E., Caracciolo P.: Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190, 691–706 (2000)

    Article  ADS  MATH  Google Scholar 

  60. Neff P., Sysow A., Wieners C.: Numerical approximation of incremental infinitesimal gradient plasticity. Int. J. Numer. Methods Eng. 77, 414–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Turco.

Additional information

Communicated by Prof. Victor Eremeyev, Prof. Peter Schiavone and Prof. Francesco dell'Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzani, A., Malagù, M. & Turco, E. Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28, 139–156 (2016). https://doi.org/10.1007/s00161-014-0409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0409-y

Keywords

Navigation