Skip to main content
Log in

Minimization of semicoercive functions: a generalization of Fichera’s existence theorem for the Signorini problem

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

An Erratum to this article was published on 19 November 2014

Abstract

The existence theorem of Fichera for the minimum problem of semicoercive quadratic functions in a Hilbert space is extended to a more general class of convex and lower semicontinuous functions. For unbounded domains, the behavior at infinity is controlled by a lemma which states that every unbounded sequence with bounded energy has a subsequence whose directions converge to a direction of recession of the function. Thanks to this result, semicoerciveness plus the assumption that the effective domain is boundedly generated, that is, admits a Motzkin decomposition, become sufficient conditions for existence. In particular, for functions with a smooth quadratic part, a generalization of the existence condition given by Fichera’s theorem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adly S., Ernst E., Théra M.: A characterization of convex and semicoercive functionals. J. Convex Anal. 8, 127–148 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Baiocchi C., Gastaldi F., Tomarelli F.: Some existence results on noncoercive variational inequalities. Annali Scuola Normale Superiore Pisa, Serie IV XIII, 617–659 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Baiocchi C., Buttazzo G., Gastaldi F., Tomarelli F.: General existence theorems for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100, 149–189 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borwein J.M., Moors W.B.: Stability of closedness of convex cones under linear mappings. J. Convex Anal. 16, 699–705 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Brezis, H.: Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1983). English translation: Functional Analysis. Springer, Heidelberg (1987)

  6. Browder F.E.: Non linear monotone operators and convex sets in Banach spaces. Bull. Am. Math. Soc. 71, 780–785 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ciarlet P.G.: Mathematical Elasticity. Vol. 1: Three Dimensional Elasticity. North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  8. Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  9. Duvaut, G.: Problèmes unilatéraux en mécanique des milieux continus. In: Proceedings of the International Congress of Mathematics, Nice 1970, Tome 3. Gauthier-Villars, pp. 71–77 (1971)

  10. Duvaut, G, Lions, J.L.: Les Inéquations en Mathématique et en Physique. Dunod, Paris (1972). English translation: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

  11. Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels. Dunod, Paris (1974). English translation: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1975)

  12. Ernst E., Théra M.: Continuous sets and non-attaining functionals in reflexive Banach spaces. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications, pp. 343–358. Springer, New York (2005)

    Chapter  Google Scholar 

  13. Fichera G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Atti Accademia Naz. Lincei, Sez. I 7, 71–140 (1964)

    MathSciNet  MATH  Google Scholar 

  14. Fichera G.: Boundary value problems in elasticity with unilateral constraints. In: Truesdell, C (ed.) Handbuch der Physik, vol. VIa/2, pp. 391–424. Springer, Berlin (1972)

    Google Scholar 

  15. Goberna M.A., Iusem A., Martínez-Legaz J.E., Todorov M.I.: Motzkin decomposition of closed convex sets via truncation. J. Math. Anal. Appl. 400, 35–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goeleven D.: Noncoercive Variational Problems and Related Results. Longman, Harlow (1996)

    MATH  Google Scholar 

  17. Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  18. Lions J.L., Stampacchia G.: Inéquation variationnelles non coercives. C. R. Acad. Sc. Paris 261, 25–27 (1965)

    MathSciNet  MATH  Google Scholar 

  19. Lions J.L., Stampacchia G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493–519 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. Motzkin, T.: Beiträge zur Theorie der linearen Ungleichungen. Basel: Inaugural Disseration 73 S (1936)

  21. Pataki G.: On the closedness of the linear image of a closed convex cone. Math. Oper. Res. 32, 395–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar R.T.: Convex Analysis. SIAM, Philadelphia (1970)

    Book  MATH  Google Scholar 

  23. Signorini, A.: Sopra alcune questioni di elastostatica. Atti Soc. Ital. per il Progresso delle Scienze (1933)

  24. Signorini A.: Questioni di elasticità nonlinearizzata e semi-linearizzata. Rend. di Matem. e delle sue Appl. 18, 95–139 (1959)

    MathSciNet  MATH  Google Scholar 

  25. Stampacchia G.: Formes bilinéaires coercitives sur les ensembles convexes. C.R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  26. Stampacchia, G.: Variational inequalities. In: Proceedings of the International Congress of Mathematicians, Nice 1970, Tome 2. Gauthier-Villars, pp. 877–883 (1971)

  27. Yosida K.: Functional Analysis. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  28. Zălinescu C.: Convex Analysis in General Vector Spaces. World Scientific, New Jersey (2002)

    Book  MATH  Google Scholar 

  29. Zeidler E.: Nonlinear Functional Analysis and Its Applications. Vol. III, Variational Methods and Optimization. Springer, New York (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpietro Del Piero.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell'Isola.

Dedicated to the memory of Jean-Jacques Moreau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piero, G.D. Minimization of semicoercive functions: a generalization of Fichera’s existence theorem for the Signorini problem. Continuum Mech. Thermodyn. 28, 5–17 (2016). https://doi.org/10.1007/s00161-014-0379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0379-0

Keywords

Navigation