Skip to main content
Log in

A paradigmatic minimal system to explain the Ziegler paradox

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The destabilization effect of damping on a class of general dynamical systems is discussed. The phenomenon of jump in the critical value of the bifurcation parameter, in passing from undamped to damped system, is view in a new perspective, according to which no discontinuities manifest themselves. By using asymptotic analysis, it is proved that all subcritically loaded undamped systems are candidate to become unstable, provided a suitable damping matrix is added. The mechanism of instability is explained by introducing the concept of modal dampings, as the components of the damping forces along the unit vectors of a non-orthogonal eigenvector basis. Such quantities can change sign while the load changes the eigenvectors of the basis, thus triggering instability. A paradigmatic, non-physical, minimal system has been built up, admitting closed-form solutions able to explain the essence of the destabilizing phenomenon. Series expansions carried out on the exact solution give information on how to deal more complex systems by perturbation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ryu B.R., Katayama K., Sugiyama Y.: Dynamic stability of Timoshenko columns subjected to subtangential forces. Comput. Struct. 68, 499–512 (1998)

    Article  MATH  Google Scholar 

  2. Langthjem M.A., Sugiyama Y.: Dynamic stability of columns subjected to follower loads: a survey. J. Sound Vib. 238, 809–851 (2000)

    Article  ADS  Google Scholar 

  3. Mazidi A., Fazelzadeh S.A., Marzocca P.: Flutter of aircraft wings carrying a powered engine under roll maneuver. J. Aircr. 48, 874–883 (2011)

    Article  Google Scholar 

  4. Fazelzadeh S.A., Mazidi A.: Nonlinear aeroelastic analysis of bending-torsion wings subjected to a transverse follower force. ASME J. Comput. Nonlinear Dyn. 6(3), 031016 (2011)

    Article  Google Scholar 

  5. Fazelzadeh S.A., Eghtesad M., Azadi M.: Buckling and flutter of a column enhanced by piezoelectric layers and lumped mass under a follower force. Int. J. Struct. Stab. Dyn. 10, 1083–1097 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10, 625–659 (2004)

    Article  MATH  Google Scholar 

  7. Maurini C., dell’Isola F., Del Vescovo D.: Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech. Syst. Signal Process. 18, 1243–1271 (2004)

    Article  ADS  Google Scholar 

  8. dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68, 1–19 (1998)

    Article  ADS  MATH  Google Scholar 

  9. Lerbet J., Kirillov O.N., Aldowaji M., Challamel N., Nicot F., Darve F.: Additional constraints may soften a non-conservative structural system: Buckling and vibration analysis. Int. J. Solids Struct. 50(2), 363–370 (2013)

    Article  Google Scholar 

  10. Lerbet J., Aldowaji M., Challamel N., Nicot F., Prunier F., Darve F.: P-positive definite matrices and stability of nonconservative systems. Z. Angew. Math. Mech. 92(5), 409–422 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang L.: Flutter instability of supported piped conveying fluid subjected to distributed follower forces. Acta Mech. Sin. 25, 46–52 (2012)

    Article  Google Scholar 

  12. Katsikadelis J.T., Tsiatas G.C.: Non-linear dynamic stability of damped Beck’s column with variable cross-section. Int. J. Nonlinear Mech. 42, 164–171 (2007)

    Article  ADS  Google Scholar 

  13. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid–permeable interfaces in porous media: a variational approach. Int. J. Solids Struct. 46, 3150–3164 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Madeo A., Gavrilyuk S.: Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porous-medium permeable interface. Eur. J. Mech. A-Solid 22, 897–910 (2010)

    Article  MathSciNet  Google Scholar 

  15. Rosi G., Giorgio I., Eremeyev V.A.: Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. Z. Angew. Math. Mech. 93(12), 914–927 (2013)

    Article  MathSciNet  Google Scholar 

  16. Luongo, A., Ferretti, M.: Can a semi-simple eigenvalue admit fractional sensitivities? Appl. Math. Comp., doi:10.1016/j.amc.2014.01.178 (2014)

  17. Seyranian A.P., Di Egidio A., Contento A., Luongo A.: Solution to the problem of Nicolai. J. Sound Vib. 333(7), 1932–1944 (2014)

    Article  ADS  Google Scholar 

  18. Luongo, A., Ferretti, M., Seyranyan, A.P.: Damping effects on stability of the compressed Nicolai beam. Accepted for publication in M&MoCS J (2014)

  19. Crandall, S.H.: The effect of damping on the stability of gyroscopic pendulums. In: Casey, J., Crochet, M.J. Theoretical, experimental, and numerical contributions to the mechanics of fluids and Solids., pp. 761–780. Birkhäuser Basel, (1995)

  20. Hoveijn I., Ruijgrok M.: The stability of parametrically forced coupled oscillators in sum resonance. Z. Angew. Math. Phys. 46, 384–392 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Moffatt H.K., Shimomura Y., Branicki M.: Dynamics of an axisymmetric body spinning on a horizontal surface. I. Stability and the gyroscopic approximation. Proc. R. Soc. Lond. A 460, 3643–3672 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Kirillov O.N.: Gyroscopic stabilization in the presence of nonconservative forces. Dokl. Math. 76(2), 780–785 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Kimball A.L.: Internal friction theory of shaft whirling. Gen. Electr. Rev. 27, 224–251 (1924)

    Google Scholar 

  24. Smith D.M.: The motion of a rotor carried by a flexible shaft in flexible bearings. Proc. R. Soc. Lond. A 142, 92–118 (1933)

    Article  ADS  Google Scholar 

  25. Kapitsa P.L.: Stability and passage through the critical speed of the fast spinning rotors in the presence of damping. Zh. Tech. Phys. 9(2), 124–147 (1939)

    Google Scholar 

  26. Ziegler H.: Die stabilitätskriterien der elastomechanik. Ing. Arch. 20, 49–56 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  27. Beck M.: Die knicklast des einseitig eingespannten, tangential gedrückten stabes. Z. Angew. Math. Phys. 3, 225–228 (1952)

    Article  MATH  Google Scholar 

  28. Bottema O.: On the stability of the equilibrium of a linear mechanical system. Z. Angew. Math. Phys. 6, 97–104 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bottema O.: The Routh–Hurwitz condition for the biquadratic equation. Indagat. Math. 18, 403–406 (1956)

    MathSciNet  Google Scholar 

  30. Bolotin V.V.: Nonconservative problems of the theory of elastic stability. Macmillan, New York (1963)

    MATH  Google Scholar 

  31. Herrmann G., Jong I.C.: On the destabilizing effect of damping in nonconservative elastic systems. ASME J. Appl. Mech. 32(3), 592–597 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  32. Herrmann G.: Stability of equilibrium of elastic systems subjected to non-conservative forces. Appl. Mech. Revs. 20, 103–108 (1967)

    Google Scholar 

  33. Leipholz H.: Über den einfluss der dämpfung bei nichtkonservativen stabilitätsproblemen elastischer stäbe. Ing. Arch. 33(5), 308–321 (1964)

    MATH  Google Scholar 

  34. Plaut R.H., Infante E.F.: The effect of external damping on the stability of Beck’s column. Int. J. Solids Struct. 6(5), 491–496 (1970)

    Article  MATH  Google Scholar 

  35. Plaut R.H.: A new destabilization phenomenon in nonconservative systems. Z. Angew. Math. Mech. 51(4), 319–321 (1971)

    Article  Google Scholar 

  36. Kirillov O.N., Verhulst F.: Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella. Z. Angew. Math. Mech. 90(6), 462–488 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Seyranian, A.P., Mailybaev, A.A.: A remark to the paper by O.N. Kirillov and F.Verhulst “Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella?” [Zamm 90, no. 6, 462–488 (2010)], Z. Angew. Math. Mech. 92(3), 253–253 (2012)

  38. Seyranian, A.P., Mailybaev, A.A.: Authors’ reply to “A remark to the paper by O.N. Kirillov and F. Verhulst “Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella?” [Zamm 90, no. 6, 462-488 (2010)], Z. Angew. Math. Mech. 92 (3), 254–254 (2012)

  39. Lahiri A., Roy M.S.: The Hamiltonian Hopf bifurcation: an elementary perturbative approach. Int. J. Nonlinear Mech. 36(5), 787–802 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Whitney H.: The general type of singularity of a set of 2n-1 smooth functions of n variables. Duke Math. J. 10, 161–172 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  41. Kirillov O.N.: A theory of the destabilization paradox in non-conservative systems. Acta Mech. 174(3-4), 145–166 (2005)

    Article  MATH  Google Scholar 

  42. Kirillov O.N., Seyranian A.P.: The effect of small internal and external damping on the stability of distributed non-conservative systems. J. Appl. Math. Mech. 69, 529–552 (2005)

    Article  MathSciNet  Google Scholar 

  43. Seyranian A.P., Malyabev A.A.: Multiparameter stability theory with mechanical applications. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  44. Luongo A., Paolone A., Di Egidio A.: Sensitivities and linear stability analysis around a double zero eigenvalue. AIAA J. 38(4), 702–710 (2000)

    Article  ADS  Google Scholar 

  45. Walker J.A.: A note on stabilizing damping configurations for linear nonconservative systems. Int. J. Solids Struct. 9(12), 1543–1545 (1973)

    Article  MATH  Google Scholar 

  46. Banichuk N.V., Bratus A.S., Myshkis A.D.: Stabilizing and destabilizing effects in non-conservative systems. J. Appl. Math. Mech. 53(2), 158–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kirillov O.N., Seyranian A.P.: Stabilization and destabilization of a circulatory system by small velocity-dependent forces. J. Sound Vib. 283(3-5), 781–800 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Guckenheimer J., Holmes P.: Nonlinear oscillations, dynamical systems and bifurcation of vector fields. Springer, Berlin (1983)

    Book  Google Scholar 

  49. Luongo A.: Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues. AIAA J. 31(7), 1321–1328 (1993)

    Article  ADS  MATH  Google Scholar 

  50. Luongo A.: Free vibrations and sensitivity analysis of a defective two degree-of-freedom system. AIAA J. 33(1), 120–127 (1995)

    Article  ADS  MATH  Google Scholar 

  51. Luongo A.: Eigensolutions of perturbed nearly defective matrices. J. Sound Vib. 185(3), 377–395 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Luongo.

Additional information

Communicated by Angela Madeo and Francois Nicot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luongo, A., D’Annibale, F. A paradigmatic minimal system to explain the Ziegler paradox. Continuum Mech. Thermodyn. 27, 211–222 (2015). https://doi.org/10.1007/s00161-014-0363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0363-8

Keywords

Navigation