Skip to main content

Advertisement

Log in

Thermomechanics of a metal hydride-based hydrogen tank

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, a thermodynamical model of a porous media made of one or two solid phases α and β (depending on the hydrogen concentration) and one gas phase H2 is presented. As an extension of previous works performed by Gondor and Lexcellent (Int J Hydrog Energy 34(14):5716–5725, doi:10.1016/j.ijhydene.2009.05.070, 2009), our attention is paid to the identification of the vectorial displacement and by consequence to the stress and strain states in every point of the tank. This study allows a safe design of the reservoir. In front of the complexity of the problem to solve, a synthesis and a table of unknowns, constants, and parameters will ease the reader understanding. The problem is restricted to the isotropic elastic behavior of the solid phases. A great ingredient of the investigation is the phase transformation between the two phases α and β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gondor, G., Lexcellent, C.: Analysis of hydrogen storage in metal hydride tanks introducing an induced phase transformation. Int. J. Hydrog. Energy 34(14), 5716–5725 (2009). doi:10.1016/j.ijhydene.2009.05.070. http://www.sciencedirect.com/science/article/pii/S0360319909007502

  2. Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414(6861), 353–358 (2001). doi:10.1038/35104634. http://www.nature.com/nature/journal/v414/n6861/abs/414353a0.html

  3. Lacher, J.R.: A Theoretical Formula for the Solubility of Hydrogen in Palladium. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 161(907), 525–545 (1937). doi:10.1098/rspa.1937.0160. http://rspa.royalsocietypublishing.org/content/161/907/525

  4. Lototsky, M., Yartys, V., Marinin, V., Lototsky, N.: Modelling of phase equilibria in metal–hydrogen systems. J. Alloys Compd. 356–357, 27–31 (2003). doi:10.1016/S0925-8388(03)00095-1. http://www.sciencedirect.com/science/article/pii/S0925838803000951

  5. Askri, F., Jemni, A., Ben Nasrallah, S.: Study of two-dimensional and dynamic heat and mass transfer in a metal–hydrogen reactor. Int. J. Hydrog. Energy 28(5), 537–557 (2003). doi:10.1016/S0360-3199(02)00141-6. http://www.sciencedirect.com/science/article/pii/S0360319902001416

  6. Jemni, A., Nasrallah, S.: Study of two-dimensional heat and mass transfer during absorption in a metal–hydrogen reactor. Int. J. Hydrog. Energy 20(1), 43–52 (1995). doi:10.1016/0360-3199(93)E0007-8. http://www.sciencedirect.com/science/article/pii/0360319993E00078

  7. Gambini, M., Manno, M., Vellini, M.: Numerical analysis and performance assessment of metal hydride-based hydrogen storage systems. Int. J. Hydrog. Energy 33(21), 6178–6187 (2008). doi:10.1016/j.ijhydene.2008.08.006. http://www.sciencedirect.com/science/article/pii/S0360319908009816

  8. Payá, J., Linder, M., Laurien, E., Corberán, J.: Mathematical models for the P–C–T characterization of hydrogen absorbing alloys. J. Alloys Compd. 484(1–2), 190–195 (2009). doi:10.1016/j.jallcom.2009.05.069. http://www.sciencedirect.com/science/article/pii/S0925838809010573

  9. Chapelle, D., Gillia, O., Feldic, M.: Analyse thermo-mécanique d’un prototype de stockage hybride (solide–gazeux) d’hydrogène. in 19ème Congrès Français de Mécanique (2009). http://hal.archives-ouvertes.fr/hal-00434400

  10. Pons, M., Dantzer, P.: Determination of thermal conductivity and wall heat transfer coefficient of hydrogen storage materials. Int. J. Hydrog. Energy 19(7), 611–616 (1994). doi:10.1016/0360-3199(94)90220-8. http://www.sciencedirect.com/science/article/pii/0360319994902208

  11. Selvaraj, N.B., Chapelle, D., Perreux, D., Figiel, H.: Modelling the evolution of temperature inside LaNi4.78Sn0.22 storage tank during refueling. Mater. Des. 30(4), 954–957 (2009). doi:10.1016/j.matdes.2008.07.007. http://www.sciencedirect.com/science/article/pii/S0261306908003415

  12. Fang, S., Zhou, Z., Zhang, J., Yao, M., Feng, F., Northwood, D.: Two mathematical models for the hydrogen storage properties of AB2 type alloys. J. Alloys Compd. 293–295, 10–13 (1999). doi:10.1016/S0925-8388(99)00380-1. http://www.sciencedirect.com/science/article/pii/S0925838899003801

  13. Joubert, J.M.: A Calphad-type equation of state for hydrogen gas and its application to the assessment of Rh–H system. Int. J. Hydrog. Energy 35(5), 2104–2111 (2010). doi:10.1016/j.ijhydene.2010.01.006. http://www.sciencedirect.com/science/article/pii/S0360319910000133

  14. Palumbo, M., Urgnani, J., Baldissin, D., Battezzati, L., Baricco, M.: Thermodynamic assessment of the H–La–Ni system. Calphad 33(1), 162–169 (2009). doi:10.1016/j.calphad.2008.09.003. http://www.sciencedirect.com/science/article/pii/S0364591608000898

  15. Lukas H., Fries S.G., Sundman B.: Computational Thermodynamics: The Calphad Method, 1st edn. Cambridge University Press, New York, NY, USA (2007)

    Book  Google Scholar 

  16. Lexcellent, C., Gondor, G.: Analysis of hydride formation for hydrogen storage: Pressure–composition isotherm curves modeling. Intermetallics 15(7), 934–944 (2007). doi:10.1016/j.intermet.2006.11.002. http://www.sciencedirect.com/science/article/pii/S0966979506003426

  17. Schwarz, R.B., Khachaturyan, A.G.: Thermodynamics of Open Two-Phase Systems with Coherent Interfaces. Phys. Rev. Lett. 74(13), 2523–2526 (1995). doi:10.1103/PhysRevLett.74.2523. http://link.aps.org/doi/10.1103/PhysRevLett.74.2523

  18. Schwarz, R., Khachaturyan, A.: Thermodynamics of open two-phase systems with coherent interfaces: Application to metal–hydrogen systems. Acta Mater. 54(2), 313–323 (2006). doi:10.1016/j.actamat.2005.08.044. http://www.sciencedirect.com/science/article/pii/S1359645405005252

  19. Raniecki, B., Lexcellent, C.: Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur. J. Mech. A/Solids 17(2), 185–205 (1998). doi:10.1016/S0997-7538(98)80082-X. http://www.sciencedirect.com/science/article/pii/S099775389880082X

  20. Marty, P., Fourmigue, J.F., Rango, P.D., Fruchart, D., Charbonnier, J.: Numerical simulation of heat and mass transfer during the absorption of hydrogen in a magnesium hydride. Energy Convers. Manag. 47(20), 3632–3643 (2006). doi:10.1016/j.enconman.2006.03.014. http://www.sciencedirect.com/science/article/pii/S0196890406000732

  21. Demircan, A., Demiralp, M., Kaplan, Y., Mat, M.D., Veziroglu, T.N.: Experimental and theoretical analysis of hydrogen absorption in – reactors. Int. J. Hydrog. Energy 30(13–14), 1437–1446 (2005). doi:10.1016/j.ijhydene.2005.02.002. http://www.sciencedirect.com/science/article/pii/S0360319905000376

  22. Nasrallah, S.B., Jemni, A.: Heat and mass transfer models in metal-hydrogen reactor. Int. J. Hydrog. Energy 22(1), 67–76 (1997). doi:10.1016/S0360-3199(96)00039-0. http://www.sciencedirect.com/science/article/pii/S0360319996000390

  23. Nakagawa, T., Inomata, A., Aoki, H., Miura, T.: Numerical analysis of heat and mass transfer characteristics in the metal hydride bed. Int. J. Hydrog. Energy 25(4), 339–350 (2000). doi:10.1016/S0360-3199(99)00036-1. http://www.sciencedirect.com/science/article/pii/S0360319999000361

  24. Minko, K., Artemov, V., Yan’kov, G.: Numerical simulation of sorption/desorption processes in metal–hydride systems for hydrogen storage and purification. Part I: development of a mathematical model. Int. J. Heat Mass Transf. 68, 683–692 (2014). doi:10.1016/j.ijheatmasstransfer.2013.09.056. http://www.sciencedirect.com/science/article/pii/S0017931013008302

  25. Chaise, A., Marty, P., Rango, P.d., Fruchart, D.: A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor. Int. J. Heat Mass Transf. 52(19–20), 4564–4572 (2009). doi:10.1016/j.ijheatmasstransfer.2009.03.052. http://www.sciencedirect.com/science/article/pii/S0017931009002452

  26. Ao, B., Chen, S., Jiang, G.: A study on wall stresses induced by LaNi5 alloy hydrogen absorption–desorption cycles. J. Alloys Compd. 390(1–2), 122–126 (2005). doi:10.1016/j.jallcom.2004.05.092. http://www.sciencedirect.com/science/article/pii/S0925838804010692

  27. Charlas, B., Chaise, A., Gillia, O., Doremus, P., Imbault, D.: Investigation of hydride powder bed swelling and shrinking during hydrogen absorption/desorption cycles under different compressive stresses. J. Alloys Compd. 580(Suppl 1), S149–S152 (2013). doi:10.1016/j.jallcom.2013.01.192. http://www.sciencedirect.com/science/article/pii/S0925838813002752

  28. Nasako, K., Ito, Y., Hiro, N., Osumi, M.: Stress on a reaction vessel by the swelling of a hydrogen absorbing alloy. J. Alloys Compd. 264(1–2), 271–276 (1998). doi:10.1016/S0925-8388(97)00246-6. http://www.sciencedirect.com/science/article/pii/S0925838897002466

  29. Qin, F., Chen, J., Chen, Z.: The hydriding–dehydriding characteristics of La0.6Y0.4Ni4.8Mn0.2 and their influences in the surface strain on small-scale, thin-wall and vertical containers. Mater. Des. 29(10), 1926–1933 (2008). doi:10.1016/j.matdes.2008.04.024. http://www.sciencedirect.com/science/article/pii/S026130690800109X

  30. Hu, X.: Mechanism Analysis on Stress Accumulation in Cylindrical Vertical-Placed Metal Hydride Reactor. Energy Power Eng. 03(04), 490–498 (2011). doi:10.4236/epe.2011.34059. http://www.scirp.org/journal/PaperInformation.aspx?paperID=7378#.UzBcAaiBPp0

  31. Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, London (2010). http://onlinelibrary.wiley.com/book/10.1002/9780470710388

  32. Dornheim, M.: Thermodynamics of metal hydrides: tailoring reaction enthalpies of hydrogen storage materials. In: Moreno Pirajn, J.C. (ed.) Thermodynamics: Interaction Studies—Solids, Liquids and Gases. InTech (2011). http://www.intechopen.com/books/thermodynamics-interaction-studies-solids-liquids-and-gases/thermodynamics-of-metal-hydrides-tailoring-reaction-enthalpies-of-hydrogen-storage-materials

  33. Charlas, B., Gillia, O., Doremus, P., Imbault, D.: Experimental investigation of the swelling/shrinkage of a hydride bed in a cell during hydrogen absorption/desorption cycles. Int. J. Hydrog. Energy 37(21), 16031–16041 (2012). doi:10.1016/j.ijhydene.2012.07.091. http://www.sciencedirect.com/science/article/pii/S0360319912017211

  34. Martin, M., Gommel, C., Borkhart, C., Fromm, E.: Absorption and desorption kinetics of hydrogen storage alloys. J. Alloys Compd. 238(1–2), 193–201 (1996). doi:10.1016/0925-8388(96)02217-7. http://www.sciencedirect.com/science/article/pii/0925838896022177

  35. Wang, C., Wang, X., Lei, Y., Chen, C., Wang, Q.: The hydriding kinetics of MlNi5–I. Development of the model. Int. J. Hydrog. Energy 21(6), 471–478 (1996). doi:10.1016/0360-3199(95)00109-3. http://www.sciencedirect.com/science/article/pii/0360319995001093

  36. Wang, X., Wang, C., Chen, C., Lei, Y., Wang, Q.: The hydriding kinetics of MlNi5–II. Experimental results. Int. J. Hydrog. Energy 21(6), 479–484 (1996). doi:10.1016/0360-3199(95)00111-5. http://www.sciencedirect.com/science/article/pii/0360319995001115

  37. Joubert, J.M., Černý, R., Latroche, M., Percheron-Guégan, A., Yvon, K.: Compressibility and thermal expansion of LaNi5 and its substitutional derivatives (LaNi5-xMx; M = Mn, Al, Co). Intermetallics 13(2), 227–231 (2005). doi:10.1016/j.intermet.2004.08.004. http://www.sciencedirect.com/science/article/pii/S0966979504002845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lexcellent.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lexcellent, C., Gay, G. & Chapelle, D. Thermomechanics of a metal hydride-based hydrogen tank. Continuum Mech. Thermodyn. 27, 379–397 (2015). https://doi.org/10.1007/s00161-014-0356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0356-7

Keywords

Navigation