Skip to main content
Log in

Ageing of polymer bonds: a coupled chemomechanical modelling approach

  • Review Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

With the increasing number of requirements on joinings, it gets more and more important to understand and predict an assemblies properties. Nowadays, in industrial applications, combinations of different materials get more common. In most of those cases, it is, besides other advantages, useful to connect such parts with adhesives to avoid local cells. Thus, the knowledge about the mechanical behaviour of adhesives over the whole time of utilisation is an essential element of engineering. As it is well known, ageing due to environmental influences such as oxygen, radiation, ozone and others plays a major role in polymers properties. So, for the prediction of applicability over the whole lifetime of a technical component, the change in mechanical properties due to ageing is necessary. In this contribution, we introduce a material model which takes into account the internal structure of an adhesive. Therefore, an interphase zone is introduced. In the interphase, which is developed due to the contact of an adhesive with an adherent, the materials properties change continuously from the surface to the centre of the joint, where the polymer is in a bulky state. Built up on this geometry dependency, the materials ageing as a function of the position is described. To model the change of the polymers state, we use a parameter representing chain scission processes and another one for the reformation of a new network. In a last step, the model is transferred into a finite element code for exemplary calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach M., Duarte J.: A finite element methodology to predict age-related mechanical properties and performance changes in rubber components. In: Busfield, (ed.) Constitutive Models for Rubber III, pp. 59–67. Balkema, Rotterdam (2003)

    Google Scholar 

  2. Andrews R., Tobolsky A., Hanson E.: The theory of permanent set at elevated temperatures in natural and synthetic rubber vulcanizates. J. Appl. Phys. 17, 352–361 (1946)

    Article  ADS  Google Scholar 

  3. Audouin L., Langlois V., Verdu J., de Bruijn J.: Review: role of oxygen diffusion in polymer ageing: kinetic and mechanical aspects. J. Mater. Sci. 29, 569–583 (1994)

    Article  ADS  Google Scholar 

  4. Becker G., Braun D.: Kunststoff Handbuch 1, Die Kunststoffe-Chemie, Physik, Technologie. Carl Hanser, München (1996)

    Google Scholar 

  5. Blum, G., Shelton, J., Winn, H.: Rubber oxidation and ageing studies. Ind. Eng. Chem. 43, 464–471 (1951)

    Google Scholar 

  6. Bouchet J., Roche A.A., Jacquelin E.: How do residual stresses and interphase mechanical properties affect practical adhesion of epoxy diamine/metallic substrate system. J. Adhes. Sci. Technol. 12, 1603–1623 (2002)

    Article  Google Scholar 

  7. Coleman B.D., Noll W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249 (1961)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Dippel, B.: Glasgefüllte Polymere—Experimente, Modellierung und FE-Umsetzung. Lehrstuhl für Technische Mechanik, Universität des Saarlandes (2011)

  9. Duarte J., Achenbach M.: On the modelling of rubber ageing and performance changes in rubbery components. Kaut. Gummi Kunstst. 60, 172–175 (2007)

    Google Scholar 

  10. Dunn J., Scalan J., Watson W.: Stress relaxation during the thermal oxidation of vulcanized natural rubber. Trans. Faraday Soc. 55, 667–675 (1959)

    Article  Google Scholar 

  11. Ehlers, W., Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik. In: Wriggers, P., Meißner, U., Stein, E., Wunderlich, W. (eds.), Finite Elemente in der Baupraxis: Modellierung, Berechnung und Konstruktion, Beiträge zur Tagung FEM ’98 an der TU Darmstadt am 5. und 6. März 1998. Ernst & Sohn, Berlin, pp. 431–400 (1998)

  12. Ehrenstein, G., Pongratz, S.: Beständigkeit von Kunststoffen. Carl Hanser Verlag (2007)

  13. Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  14. Hodge I.: Physical ageing in polymer glasses. Science 267, 1945–1947 (1995)

    Article  ADS  Google Scholar 

  15. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  16. Hutchinson J.: Physical ageing of polymers. Prog. Polym. Sci. 20, 703–760 (1995)

    Article  Google Scholar 

  17. Johlitz, M.: Experimentelle Untersuchung und theoretische Modellierung von Maßstabseffekten in Klebungen. Saarbrücker Reihe, Band 12, Materialwissenschaft und Werkstofftechnik. Shaker Verlag, Aachen (2008)

  18. Johlitz M., Diebels S., Batal J., Steeb H., Possart W.: Size effects in polyurethane bonds: experiments, modelling and parameter identification. J. Mater. Sci. 43, 4768–4779 (2008)

    Article  ADS  Google Scholar 

  19. Johlitz, M., Lion, A.: Chemo-thermomechanical ageing of elastomers based on multiphase coninuum mechanics. Continuum Mech Therm 25, 605–624 (2012)

    Google Scholar 

  20. Lion A., Johlitz M.: On the representation of chemical ageing of rubber in continuum mechanics. Int. J. Solids Struct. 49, 1127–1240 (2012)

    Article  MathSciNet  Google Scholar 

  21. Munz M.: Evidence for a three-zone interphase with complex elastic-plastic behaviour: nanoindentiation study of an epoxy/thermoplastic composite. J. Phys. D Appl. Phys. 39, 4044–4058 (2006)

    Article  Google Scholar 

  22. Ore S.: A modification of the method of intermittent stress relaxation measurements on rubber vulcanisates. J. Appl. Polym. Sci. 2, 318–321 (1959)

    Article  Google Scholar 

  23. Perez J., Cavaille J., Calleja R., Ribelles J., Pradas M., Greus A.: Physical ageing of amorphous polymers—theoretical analysis and experiments on polymethylmethacrylate. Die Makromolekulare Chemie 192, 2141–2161 (1991)

    Article  Google Scholar 

  24. Pochiraju K., Tandon G.: Modeling thermo-oxidative layer growth in high-temperature resins. J. Eng. Mater.-Trans. ASME 128, 107–116 (2006)

    Article  Google Scholar 

  25. Rivlin R.S.: Large elastic deformation of isotropic materials IV: further developments of the general theory. Philos. Trans. R. Soc. Lond. A A241, 379–397 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  26. Scalan J., Watson W.: The interpretation of stress relaxation measurements made on rubber during ageing. Trans. Faraday Soc. 54, 740–750 (1957)

    Article  Google Scholar 

  27. Schänhals A., Donth E.: Analyse einiger Aspekte der physikalischen Alterung von amorphen Polymeren. Acta Polym. 37, 475–480 (1986)

    Article  Google Scholar 

  28. Shaw J., Jones S., Wineman A.: Chemorheological response of elastomers at elevated temperatures: experiments and simulations. J. Mech. Phys. Solids 53, 2758–2793 (2005)

    Article  ADS  MATH  Google Scholar 

  29. Simo J.C., Taylor R.L.: Penalty function formulations for incompressible nonlinear elastostatics. Comput. Meth. Appl. Mech. Eng. 35, 107–118 (1982)

    Article  ADS  MATH  Google Scholar 

  30. Smith L.: The Language of Rubber: An Introduction to the Specification and Testing of Elastomers. Butterworth-Heinemann publication house, London (1993)

    Google Scholar 

  31. Steinke, L., Veltin, U., Flamm, M., Lion, A., Celina, M.: Numerical analysis of the heterogeneous ageing of rubber products. In: Jerrams, S., Murphy, N. (eds.) Constitutive Models for Rubber VII. Proceedings of the 7th European Conference on Constitutive models for Rubber, pp. 155–160. Dublin (2011)

  32. Tobolsky, A.V.: Mechanische Eigenschaften und Struktur von Polymeren. Berliner Union Stuttgart (1967)

  33. Tobolsky A.V., Prettyman I.B., Dillon J.H.: Stress relaxation of natural and synthetic rubber stocks. J. Appl. Phys. 15, 380–395 (1944)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Dippel.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dippel, B., Johlitz, M. & Lion, A. Ageing of polymer bonds: a coupled chemomechanical modelling approach. Continuum Mech. Thermodyn. 26, 247–257 (2014). https://doi.org/10.1007/s00161-014-0353-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-014-0353-x

Keywords

Navigation