Skip to main content
Log in

Analyzing and modeling the dynamic thermal behaviors of direct contact condensers packed with PCM spheres

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Condensers serve as important components for humidification–dehumidification (HDH) desalination plants. Based on the interpenetration continua approach with volume averaging technique, a mathematical dynamic model for analyzing the heat and mass transfer within direct contact condensers with co-current or countercurrent flow arrangement was developed. It was validated against the experimental data from a small scale HDH desalination system. Comparisons including the productivities and the temperature profiles of gas, liquid, and solid phases show good agreement with the measurements. Phase change material (PCM) melting processes have little effect on water production rate for co-current flow arrangement, but the condenser packed with PCM capsules have higher water production rates than that packed with air capsules packed under given conditions. The relative humidity profile of the bulk gas shows contrary trend with the gas temperature profile. The direct contact condenser with countercurrent flow arrangement can provide much better heat and mass transfer between gas and water and produce about 16.3% more fresh water than the same condenser with co-current flow arrangement in 4 h under given conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A crost :

Cross-sectional area of packed bed (m2)

a :

Specific packing area per unit volume of the packed column (m2/m3)

c :

Water vapor concentration in the gas mixture (mol/m3)

c p :

Specific heat at constant pressure (J/(kgK))

D :

Diffusion coefficient (m2/s)

d :

Diameter (m)

G :

Air mass flux (kg/(m2s))

ΔH m :

Latent heat of PCM while melting/solidification (J/kg)

h :

Heat transfer coefficient (W/(m2K))

h fg :

Latent heat of vaporization (J/mol)

k :

Mass transfer coefficient (m/s)

L :

Liquid mass flux (kg/(m2s))

M :

Mass flow rate (kg/s)

m cond :

Condensation mass flow rate (mol/(m3s))

p :

Pressure (kPa)

R :

Universal gas constant (8.314J/(molK))

Re:

Reynolds number, dimensionless

T :

Temperature (K)

t :

Time (s)

U :

Heat transfer coefficient between gas and liquid (W/(m2K))

v :

Mean velocity in the packed bed (m/s)

v sup :

Superficial velocity (m/s)

W :

Molecular weight (kg/mol)

z :

Coordinate of the axial direction

λ :

Thermal conductivity (W/(mK))

β :

Moisture content (kgvapor/kgair)

μ :

Dynamic viscosity (Ns/m2)

\({\varphi}\) :

Relative humidity of the gas mixture, dimensionless

ρ :

Density (kg/m3)

\({\varepsilon}\) :

Porosity or phase fraction, dimensionless

σ :

Surface tension (J/m2)

amb:

Ambient

cw:

Cold fresh water

ball:

The packing sphere or ball

bed:

The packed bed

g :

Gas (air-vapor mixture) phase

inter:

Interfacial

l :

Liquid phase

ref:

Reference conditions

s :

Solid phase

sup:

Superficial

HDH:

Humidification–dehumidification

PCM:

Phase change material/s

CS:

Continuous solid

PDEs:

Partial differential equations

RH:

Relative humidity

References

  1. Zamen M., Amidpour M., Soufari S.M.: Cost optimization of a solar humidification dehumidification desalination unit using mathematical programming. Desalination 239, 92–99 (2009)

    Article  Google Scholar 

  2. Mehrgoo M., Amidpour M.: Constructal design of humidification–dehumidification desalination unit architecture. Desalination 271, 62–71 (2011)

    Article  Google Scholar 

  3. Parekh S., Farid M.M., Selman J.R., Al-hallaj S.: Solar desalination with a humidification–dehumidification technique—a comprehensive technical review. Desalination 160(2), 167–186 (2004)

    Article  Google Scholar 

  4. Dawoud B., Zurigat Y.H., Klitzing B., Aldoss T., Theodoridis G.: On the possible techniques to cool the condenser of seawater greenhouses. Desalination 195(1–3), 119–140 (2006)

    Article  Google Scholar 

  5. Klausner J.F., Li Y., Mei R.W.: Evaporative heat and mass transfer for the diffusion driven desalination process. Heat Mass Transf. 42, 528–536 (2006)

    Article  ADS  Google Scholar 

  6. Swift A.H.P., Lu H., Becerra H.: Zero Discharge Waste Brine Management for Desalination Plants. Desalination Research and Development Program Report. University of Texas at El Paso, Texas (2002)

    Google Scholar 

  7. Li Y., Klausner J.F., Mei R., Knight J.: Direct contact condensation in packed beds. Int. J. Heat Mass Transf. 49, 4751–4761 (2006)

    Article  MATH  Google Scholar 

  8. Marques C.A.X., Fontes C.H., Embirucu M., Kalid R.A.: Efficiency control in a commercial counter flow wet cooling tower. Energy Convers. Manage. 50(11), 2843–2855 (2009)

    Article  Google Scholar 

  9. Alnaimat F., Klausner J.F., Mei R.: Transient analysis of direct contact evaporation and condensation within packed beds. Int. J. Heat Mass Transf. 54, 3381–3393 (2011)

    Article  MATH  Google Scholar 

  10. Hu T., Hassabou A.H., Spinnler M., Polifke W.: Performance analysis and optimization of direct contact condensation in a PCM fixed bed regenerator. Desalination 280(1–3), 232–242 (2011)

    Article  Google Scholar 

  11. Weislogel M.M., Chung J.N.: Experimental investigation on condensation heat transfer in small arrays of PCM-filled spheres. Int. J. Heat Mass Transf. 34, 31–45 (1991)

    Article  Google Scholar 

  12. VafaiK K., Sozen M.: An investigation of a latent heat storage packed bed and condensing flow through it. J. Heat Transf. Asme 112, 1014–1022 (1990)

    Article  Google Scholar 

  13. Hassabou, A.H., Spinnler, M., Hanafi, A., Polifke, W.: Experimental analysis of PCM-supported humidification–dehumidification desalination system. In: IDA World Congress on Desalination and Water Reuse, IDAWC/DB09-289, Dubai (2009)

  14. Arkar C., Medved S.: Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochim. Acta 438, 192–201 (2005)

    Article  Google Scholar 

  15. Wakao N., Kaguei S.: Heat and Mass Transfer in Packed Beds. Gordon and Breach Science, New York (1982)

    Google Scholar 

  16. Kaviany M.: Principles of Heat Transfer in Porous Media. 2nd edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  17. Ismail K.A.R., Stuginsky R. Jr: A parametric study on possible fixed bed models for PCM and sensible heat storage. Appl. Therm. Eng. 19, 757–787 (1999)

    Article  Google Scholar 

  18. Alnaimat F., Klausner J.F.: Solar diffusion driven desalination for decentralized water production. Desalination 289, 35–44 (2012)

    Article  Google Scholar 

  19. Voller V.R.: An overview of numerical methods for solving phase change regenerator system. In: Minkowycz, W.J., Sparrow, E.M. (eds) Advances in Numerical Heat Transfer, pp. 341–359. Taylor and Francis, London (1997)

    Google Scholar 

  20. Torab H., Beasley D.E.: Optimization of a packed bed thermal storage unit. J. Sol. Energy Eng. Asme 109, 170–175 (1987)

    Article  Google Scholar 

  21. Stichlmair J., Bravo J.L., Fair J.R.: General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Sep. & Purif 3, 19–28 (1989)

    Article  Google Scholar 

  22. Onda K., Takeuchi H., Okumoto Y.: Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Jpn. 1, 56–61 (1968)

    Article  Google Scholar 

  23. Klausner J.F., Li Y., Darwish M., Mei R.W.: Innovative diffusion driven desalination process. Trans. ASME J. Energy Res. Asme. 126, 219–225 (2004)

    Article  Google Scholar 

  24. Sun J., Besant R.W.: Heat and mass transfer during silica gel-moisture interactions. Int. J. Heat Mass Transf. 48, 4953–4962 (2005)

    Article  Google Scholar 

  25. Schlünder E.-U., Tsotsas E.: Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten Thieme. Stuttgart, New York (1988)

    Google Scholar 

  26. Galloway T.R., Sage B.H.: A model of the mechanism of transport in packed, distended, and fluidized beds. Chem. Eng. Sci. 25, 495–516 (1970)

    Article  Google Scholar 

  27. Bauer T.H.: A general analytical approach toward the thermal conductivity of porous media. Int. J. Heat Mass Transf. 36, 4181–4191 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Hu.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Hu, T., Hassabou, A.H. et al. Analyzing and modeling the dynamic thermal behaviors of direct contact condensers packed with PCM spheres. Continuum Mech. Thermodyn. 25, 23–41 (2013). https://doi.org/10.1007/s00161-012-0246-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0246-9

Keywords

Mathematics Subject Classification

Navigation