Skip to main content

Advertisement

Log in

Atmospheres of brown dwarfs

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

Brown dwarfs are the coolest class of stellar objects known to date. Our present perception is that brown dwarfs follow the principles of star formation, and that brown dwarfs share many characteristics with planets. Being the darkest and lowest mass stars known makes brown dwarfs also the coolest stars known. This has profound implication for their spectral fingerprints. Brown dwarfs cover a range of effective temperatures which cause brown dwarfs atmospheres to be a sequence that gradually changes from a M-dwarf-like spectrum into a planet-like spectrum. This further implies that below an effective temperature of \(\lesssim \)2,800 K, clouds form already in atmospheres of objects marking the boundary between M-Dwarfs and brown dwarfs. Recent developments have sparked the interest in plasma processes in such very cool atmospheres: sporadic and quiescent radio emission has been observed in combination with decaying X-ray activity indicators across the fully convective boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The geometrical cloud extension, or cloud height, can be defined in various ways. Woitke and Helling (2004) used the degree of condensation for Ti (their Eq. 16) for defining the cloud height. The distance between the gas pressure at the nucleation maximum and the gas pressure where all cloud particles have evaporated determine the cloud height in Helling et al. (2011b).

  2. The formation of weather clouds on Earth involve water condensation of pre-existing seeds particles (condensation nuclei) which origin from volcano outbreaks, wood fires, ocean salt spray, sand storms, and also cosmic-ray-induced ion-ion cluster reactions (see CERN CLOUD experiment). Noctilucent clouds in the upper Earth atmosphere, however, require the recondensation of meteoritic material to understand their existence (Saunders et al. 2007).

  3. Venot et al. (2012)’s chemical network is publicly available under http://kida.obs.u-bordeaux1.fr/.

References

  • Ackerman AS, Marley MS (2001) Precipitating condensation clouds in substellar atmospheres. Ap J 556:872–884. doi:10.1086/321540; arXiv:astro-ph/0103423

  • Ackerman AS, Marley MS (2013) Erratum: ”Precipitating condensation clouds in substellar atmospheres”. Ap J 765:75. doi:10.1088/0004-637X/765/1/75

    Article  ADS  Google Scholar 

  • Allard F, Hauschildt PH, Alexander DR, Starrfield S (1997) Model atmospheres of very low mass stars and brown dwarfs. ARA A 35:137–177. doi:10.1146/annurev.astro.35.1.137

    Article  ADS  Google Scholar 

  • Allard F, Hauschildt PH, Alexander DR, Tamanai A, Schweitzer A (2001) The limiting effects of dust in brown dwarf model atmospheres. Ap J 556:357–372. doi:10.1086/321547; arXiv:astro-ph/0104256

  • Allard F, Homeier D, Freytag B, Schaffenberger W, Rajpurohit AS (2013) Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects. Memorie della Societa Astronomica Italiana Supplementi 24:128. arXiv:1302.6559

  • Allers KN, Liu MC (2013a) A near-infrared spectroscopic study of young field ultracool dwarfs. Ap J 772:79. doi:10.1088/0004-637X/772/2/79; arXiv:1305.4418

  • Allers KN, Liu MC (2013b) A near-infrared spectroscopic study of young field ultracool dwarfs: additional analysis. Mem Societa Astronomica Italiana 84:1089. arXiv:1307.7153

  • Anderson DR et al (2011) WASP-30b: a 61 \(\text{ M }{}_{Jup}\) brown dwarf transiting a V = 12, F8 star. Ap J l 726:L19. doi:10.1088/2041-8205/726/2/L19; arXiv:1010.3006

  • Antonova A, Doyle JG, Hallinan G, Golden A, Koen C (2007) Sporadic long-term variability in radio activity from a brown dwarf. A&A 472:257–260. doi:10.1051/0004-6361:20077231; arXiv:0707.0634

  • Antonova A, Hallinan G, Doyle JG, Yu S, Kuznetsov A, Metodieva Y, Golden A, Cruz KL (2013) Volume-limited radio survey of ultracool dwarfs. A&A 549:A131. doi:10.1051/0004-6361/201118583; arXiv:1212.3464

  • Apai D, Radigan J, Buenzli E, Burrows A, Reid IN, Jayawardhana R (2013a) HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. Ap J 768:121. doi:10.1088/0004-637X/768/2/121; arXiv:1303.4151

  • Apai D, Radigan J, Buenzli E, Burrows A, Reid IN, Jayawardhana R (2013b) HST spectral mapping of L/T transition brown dwarfs reveals cloud thickness variations. Ap J 768:121. doi:10.1088/0004-637X/768/2/121; arXiv:1303.4151

  • Artigau É, Bouchard S, Doyon R, Lafrenière D (2009) Photometric variability of the T2.5 brown dwarf SIMP J013656.5+093347: evidence for evolving weather patterns. Ap J 701:1534–1539. doi:10.1088/0004-637X/701/2/1534; arXiv:0906.3514

  • Audard M, Osten RA, Brown A, Briggs KR, Güdel M, Hodges-Kluck E, Gizis JE (2007) A Chandra X-ray detection of the L dwarf binary Kelu-1: simultaneous Chandra and very large array observations. A&A 471:L63–L66. doi:10.1051/0004-6361:20078093; arXiv:0707.1882

  • Bailer-Jones CAL, Mundt R (2001) Variability in ultra cool dwarfs: evidence for the evolution of surface features. A&A 367:218–235. doi:10.1051/0004-6361:20000416; arXiv:astro-ph/0012224

  • Bailey RL, Helling C, Hodosán G, Bilger C, Stark CR (2013) Ionisation in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events. arXiv:1312:6789

  • Barman TS, Hauschildt PH, Allard F (2001) Irradiated planets. Ap J 556:885–895. doi:10.1086/321610; arXiv:astro-ph/0104262

  • Barman TS, Macintosh B, Konopacky QM, Marois C (2011) Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. Ap J 733:65. doi:10.1088/0004-637X/733/1/65; arXiv:1103.3895

  • Barstow JK, Aigrain S, Irwin PGJ, Fletcher LN, Lee JM (2013) Constraining the atmosphere of GJ 1214b using an optimal estimation technique. MNRAS 434:2616–2628. doi:10.1093/mnras/stt1204; arXiv:1306.6567

  • Becklin EE, Zuckerman B (1988) A low-temperature companion to a white dwarf star. Nature 336:656–658. doi:10.1038/336656a0

    Article  ADS  Google Scholar 

  • Beichman C, Gelino CR, Kirkpatrick JD, Cushing MC, Dodson-Robinson S, Marley MS, Morley CV, Wright EL (2014) WISE Y dwarfs as probes of the brown dwarf-exoplanet connection. arXiv:1401:1194

  • Benneke B, Seager S (2012) Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Ap J 753:100. doi:10.1088/0004-637X/753/2/100; arXiv:1203.4018

  • Benz AO, Güdel M (1994) X-ray/microwave ratio of flares and coronae. A&A 285:621–630

    ADS  Google Scholar 

  • Bergemann M, Ruchti G, Serenelli A, Feltzing S, Alvez-Brito A, Asplund M, Bensby T, Heiter U, Korn A, Lind K, Marino A, Jofre P, Nordlander T, Ryde N, Gilmore G, Randich S, Binney J, Bonifacio P, Drew J, Ferguson A, Jeffries R, Micela G, Negueruela I, Prusti T, Rix HW, Vallenari A, Alfaro Navarro E, Bragaglia A, Morbidelli L, Pancino E, Recio-Blanco A, Smiljanic R, Hill V, Lardo C, de Laverny P, Magrini L, Sacco G, Costado M, Kordopatis G, Tautvaisiene G (2014) The Gaia-ESO survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk. arXiv:1401.4437

  • Berger E (2002) Flaring up all over-radio activity in rapidly rotating late M and L dwarfs. Ap J 572:503–513. doi:10.1086/340301; arXiv:astro-ph/0111317

  • Berger E (2006) Radio observations of a large sample of late m, l, and t dwarfs: the distribution of magnetic field strengths. Ap J 648:629–636. doi:10.1086/505787

    Article  ADS  Google Scholar 

  • Berger E, Rutledge RE, Reid IN, Bildsten L, Gizis JE, Liebert J, Martín E, Basri G, Jayawardhana R, Brandeker A, Fleming TA, Johns-Krull CM, Giampapa MS, Hawley SL, Schmitt JHMM (2005) The magnetic properties of an L dwarf derived from simultaneous radio, X-ray, and \(\text{ H }\alpha \) observations. Ap J 627:960–973. doi:10.1086/430343; arXiv:astro-ph/0502384

  • Berger E, Rutledge RE, Phan-Bao N, Basri G, Giampapa MS, Gizis JE, Liebert J, Martín E, Fleming TA (2009) Periodic radio and \(\text{ H }\alpha \) emission from the L dwarf binary 2MASSW J0746425+200032: exploring the magnetic field topology and radius of an L dwarf. Ap J 695:310–316. doi:10.1088/0004-637X/695/1/310; arXiv:0809.0001

  • Beuermann K, Dreizler S, Hessman FV, Backhaus U, Boesch A, Husser TO, Nortmann L, Schmelev A, Springer R (2013) The eclipsing post-common envelope binary CSS21055: a white dwarf with a probable brown-dwarf companion. A&A 558:A96. doi:10.1051/0004-6361/201322241; arXiv:1312.5088

  • Bihain G, Rebolo R, Béjar VJS, Villó-Pérez I, Díaz-Sánchez A, Pérez-Garrido A, Caballero JA, Bailer-Jones CAL, Barrado y Navascués D, Eislöffel J, Forveille T, Goldman B, Henning T, Martín EL, Mundt R (2009) Candidate free-floating super-Jupiters in the young \(\sigma \) Orionis open cluster. A&A 506:1169–1182. doi:10.1051/0004-6361/200912210; arXiv:0909.0802

  • Bilger C, Rimmer P, Helling C (2013) Small hydrocarbon molecules in cloud-forming brown dwarf and giant gas planet atmospheres. MNRAS 435:1888–1903. doi:10.1093/mnras/stt1378; arXiv:1307.2565

  • Bonnefoy M, Marleau GD, Galicher R, Beust H, Lagrange AM, Baudino JM, Chauvin G, Borgniet S, Meunier N, Rameau J, Boccaletti A, Cumming A, Helling C, Homeier D, Allard F, Delorme P (2013) The near-infrared spectral energy distribution of \(\beta \) Pictoris b. A&A 555:A107. doi:10.1051/0004-6361/201220838; arXiv:1302.1160

  • Bozhinova I, Helling Ch, Scholz A (2014) Planetary host stars: Evaluating uncertainties in ultra-cool model atmospheres. MNRAS. http://adsabs.harvard.edu/abs/2014  arXiv:1405.5416B

  • Browning MK, Basri G, Marcy GW, West AA, Zhang J (2010) Rotation and magnetic activity in a sample of M-dwarfs. Ap J 139:504–518. doi:10.1088/0004-6256/139/2/504

    ADS  Google Scholar 

  • Buenzli E, Apai D, Morley CV, Flateau D, Showman AP, Burrows A, Marley MS, Lewis NK, Reid IN (2012) Vertical atmospheric structure in a variable brown dwarf: pressure-dependent phase shifts in simultaneous hubble space telescope-spitzer light curves. Ap Jl 760:L31. doi:10.1088/2041-8205/760/2/L31; arXiv:1210.6654

  • Buenzli E, Apai D, Radigan J, Reid IN, Flateau D (2014) Brown dwarf photospheres are patchy: a hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability. Ap J 782:77. doi:10.1088/0004-637X/782/2/77; arXiv:1312.5294

  • Burgasser AJ (2004) Discovery of a second L subdwarf in the two micron all sky survey. Ap Jl 614:L73–L76. doi:10.1086/425418; arXiv:astro-ph/0409179

  • Burgasser AJ, Kirkpatrick JD (2006) Discovery of the coolest extreme subdwarf. Ap J 645:1485–1497. doi:10.1086/504375; arXiv:astro-ph/0603382

  • Burgasser AJ, Putman ME (2005) Quiescent radio emission from southern late-type M dwarfs and a spectacular radio flare from the M8 dwarf DENIS 1048–3956. Ap J 626:486–497. doi:10.1086/429788; arXiv:astro-ph/0502365

  • Burgasser AJ, Kirkpatrick JD, Brown ME, Reid IN, Burrows A, Liebert J, Matthews K, Gizis JE, Dahn CC, Monet DG, Cutri RM, Skrutskie MF (2002) The spectra of T dwarfs I: near-infrared data and spectral classification. Ap J 564:421–451. doi:10.1086/324033; arXiv:astro-ph/0108452

  • Burgasser AJ, Kirkpatrick JD, Burrows A, Liebert J, Reid IN, Gizis JE, McGovern MR, Prato L, McLean IS (2003) The first substellar subdwarf? Discovery of a metal-poor L dwarf with Halo kinematics. Ap J 592:1186–1192. doi:10.1086/375813; arXiv:astro-ph/0304174

  • Burgasser AJ, Geballe TR, Leggett SK, Kirkpatrick JD, Golimowski DA (2006) A unified near-infrared spectral classification scheme for T dwarfs. Ap J 637:1067–1093. doi:10.1086/498563; arXiv:astro-ph/0510090

  • Burgasser AJ, Vrba FJ, Lépine S, Munn JA, Luginbuhl CB, Henden AA, Guetter HH, Canzian BC (2008) Parallax and luminosity measurements of an L subdwarf. Ap J 672:1159–1166. doi:10.1086/523810; arXiv:0709.1373

  • Burgasser AJ, Gillon M, Faherty JK, Radigan J, Amaury H M J, Plavchan P, Street R, Jehin E, Delrez L, Opitom C (2014) A monitoring campaign for Luhman 16AB I: detection of resolved near-infrared spectroscopic variability. arXiv:1402.2342

  • Burleigh MR, Hogan E, Dobbie PD, Napiwotzki R, Maxted PFL (2006) A near-infrared spectroscopic detection of the brown dwarf in the post common envelope binary WD0137-349. MNRAS 373:L55–L59. doi:10.1111/j.1745-3933.2006.00242.x; arXiv:astro-ph/0609366

  • Burleigh MR, Steele PR, Dobbie PD, Farihi J, Napiwotzki R, Maxted PFL, Barstow MA, Jameson RF, Casewell SL, Gaensicke BT, Marsh TR (2011) Brown dwarf companions to white dwarfs. In: Schuh S, Drechsel H, Heber U (eds) American Institute of Physics Conference Series, vol 1331, pp 262–270. doi:10.1063/1.3556209; arXiv:1102.0505

  • Burningham B, Cardoso CV, Smith L, Leggett SK, Smart RL, Mann AW, Dhital S, Lucas PW, Tinney CG, Pinfield DJ, Zhang Z, Morley C, Saumon D, Aller K, Littlefair SP, Homeier D, Lodieu N, Deacon N, Marley MS, van Spaandonk L, Baker D, Allard F, Andrei AH, Canty J, Clarke J, Day-Jones AC, Dupuy T, Fortney JJ, Gomes J, Ishii M, Jones HRA, Liu M, Magazzú A, Marocco F, Murray DN, Rojas-Ayala B, Tamura M (2013) 76 T dwarfs from the UKIDSS LAS: benchmarks, kinematics and an updated space density. MNRAS 433:457–497. doi:10.1093/mnras/stt740; arXiv:1304.7246

  • Burningham B, Smith L, Cardoso CV, Lucas PW, Burgasser AJ, Jones HRA, Smart RL (2014) The discovery of a T6.5 subdwarf. arXiv:1401.5982

  • Burrows A, Hubbard WB, Lunine JI (1989) Theoretical models of very low mass stars and brown dwarfs. Ap J 345:939–958. doi:10.1086/167964

    Article  ADS  Google Scholar 

  • Burrows A, Hubbard WB, Lunine JI, Liebert J (2001) The theory of brown dwarfs and extrasolar giant planets. Rev Mod Phys 73:719–765. doi:10.1103/RevModPhys.73.719; arXiv:astro-ph/0103383

  • Burrows A, Burgasser AJ, Kirkpatrick JD, Liebert J, Milsom JA, Sudarsky D, Hubeny I (2002) Theoretical spectral models of T dwarfs at short wavelengths and their comparison with data. Ap J 573:394–417. doi:10.1086/340584; arXiv:astro-ph/0109227

  • Burrows A, Sudarsky D, Lunine JI (2003) Beyond the T dwarfs: theoretical spectra, colors, and detectability of the coolest brown dwarfs. Ap J 596:587–596. doi:10.1086/377709; arXiv:astro-ph/0304226

  • Burrows A, Sudarsky D, Hubeny I (2006) L and T dwarf models and the L to T transition. Ap J 640:1063–1077. doi:10.1086/500293; arXiv:astro-ph/0509066

  • Burrows A, Heng K, Nampaisarn T (2011) The dependence of brown dwarf radii on atmospheric metallicity and clouds: theory and comparison with observations. Ap J 736:47. doi:10.1088/0004-637X/736/1/47; arXiv:1102.3922

  • Casewell SL, Dobbie PD, Hodgkin ST, Moraux E, Jameson RF, Hambly NC, Irwin J, Lodieu N (2007) Proper motion L and T dwarf candidate members of the Pleiades. MNRAS 378:1131–1140. doi:10.1111/j.1365-2966.2007.11848.x; arXiv:0704.1578

  • Casewell SL, Jameson RF, Burleigh MR, Dobbie PD, Roy M, Hodgkin ST, Moraux E (2011) Methane band and Spitzer mid-IR imaging of L and T dwarf candidates in the Pleiades. MNRAS 412:2071–2078. doi:10.1111/j.1365-2966.2010.18044.x; arXiv:1011.4218

  • Casewell SL, Burleigh MR, Wynn GA, Alexander RD, Napiwotzki R, Lawrie KA, Dobbie PD, Jameson RF, Hodgkin ST (2012) WD0837+185: the formation and evolution of an extreme mass-ratio white-dwarf-brown-dwarf binary in Praesepe. Ap Jl 759:L34. doi:10.1088/2041-8205/759/2/L34; arXiv:1210.0446

  • Casewell SL, Burleigh MR, Lawrie KA, Maxted PFL, Dobbie PD, Napiwotzki R (2013) Irradiated brown dwarfs. Mem Societa Astronomica Italiana 84:1022 arXiv:1401.1405

    ADS  Google Scholar 

  • Catlow CRA, Bromley ST, Hamad S, Mora-Fonz M, Sokol AA, Woodley SM (2010) Modelling nano-clusters and nucleation. Phys Chem Chem Phys (Inc Faraday Trans) 12:786. doi:10.1039/b916069h

    Article  ADS  Google Scholar 

  • Chabrier G, Baraffe I, Allard F, Hauschildt P (2000) Evolutionary models for very low-mass stars and brown dwarfs with dusty atmospheres. Ap J 542:464–472. doi:10.1086/309513; arXiv:astro-ph/0005557

  • Chabrier G, Johansen A, Janson M, Rafikov R (2014) Giant planet and brown dwarf formation. arXiv:1401:7559

  • Cheng JY, Rockosi CM, Morrison HL, Schönrich RA, Lee YS, Beers TC, Bizyaev D, Pan K, Schneider DP (2012) Metallicity gradients in the Milky Way disk as observed by the SEGUE survey. Ap J 746:149. doi:10.1088/0004-637X/746/2/149; arXiv:1110.5933

  • Clarke FJ, Oppenheimer BR, Tinney CG (2002) A mini-survey for variability in early L dwarfs. MNRAS 335:1158–1162. doi:10.1046/j.1365-8711.2002.05691.x; arXiv:astro-ph/0205463

  • Clarke FJ, Hodgkin ST, Oppenheimer BR, Robertson J, Haubois X (2008) A search for J-band variability from late-L and T brown dwarfs. MNRAS 386:2009–2014. doi:10.1111/j.1365-2966.2008.13135.x

    Article  ADS  Google Scholar 

  • Cooper CS, Sudarsky D, Milsom JA, Lunine JI, Burrows A (2003) Modeling the formation of clouds in brown dwarf atmospheres. Ap J 586:1320–1337. doi:10.1086/367763

    Article  ADS  Google Scholar 

  • Crossfield IJM, Biller B, Schlieder JE, Deacon NR, Bonnefoy M, Homeier D, Allard F, Buenzli E, Henning T, Brandner W, Goldman B, Kopytova T (2014) A global cloud map of the nearest known brown dwarf. Nature 505:654–656. doi:10.1038/nature12955; arXiv:1401.8145

  • Cruz KL, Kirkpatrick JD, Burgasser AJ (2009) Young L dwarfs identified in the field: a preliminary low-gravity, optical spectral sequence from L0 to L5. Ap J 137:3345–3357. doi:10.1088/0004-6256/137/2/3345; arXiv:0812.0364

  • Currie T, Burrows A, Itoh Y, Matsumura S, Fukagawa M, Apai D, Madhusudhan N, Hinz PM, Rodigas TJ, Kasper M, Pyo TS, Ogino S (2011) A combined subaru/VLT/MMT 1–5 \(\mu \text{ m }\) study of planets orbiting HR 8799: implications for atmospheric properties, masses, and formation. Ap J 729:128. doi:10.1088/0004-637X/729/2/128; arXiv:1101.1973

  • Cushing MC, Looper D, Burgasser AJ, Kirkpatrick JD, Faherty J, Cruz KL, Sweet A, Sanderson RE (2009) 2MASS J06164006–6407194: the first Outer Halo L subdwarf. Ap J 696:986–993. doi:10.1088/0004-637X/696/1/986; arXiv:0902.1059

  • Cushing MC, Saumon D, Marley MS (2010) SDSS J141624.08+134826.7: Blue L dwarfs and non-equilibrium chemistry. Ap J 140:1428–1432. doi:10.1088/0004-6256/140/5/1428; arXiv:1009.2802

  • Cushing MC, Kirkpatrick JD, Gelino CR, Griffith RL, Skrutskie MF, Mainzer A, Marsh KA, Beichman CA, Burgasser AJ, Prato LA, Simcoe RA, Marley MS, Saumon D, Freedman RS, Eisenhardt PR, Wright EL (2011) The discovery of Y dwarfs using data from the wide-field infrared survey explorer (WISE). Ap J 743:50. doi:10.1088/0004-637X/743/1/50; arXiv:1108.4678

  • Cushing MC, Kirkpatrick JD, Gelino CR, Mace GN, Skrutskie MF, Gould A (2014) Three new cool brown dwarfs discovered with the wide-field infrared survey explorer (WISE) and an improved spectrum of the Y0 dwarf WISE J041022.71+150248.4. arXiv:1402.1378

  • Delfosse X, Forveille T, Perrier C, Mayor M (1998) Rotation and chromospheric activity in field M dwarfs. A&A 331:581–595

    ADS  Google Scholar 

  • Dieterich SB, Henry TJ, Jao WC, Winters JG, Hosey AD, Riedel AR, Subasavage JP (2013) The solar neighborhood XXXII: the hydrogen burning limit. arXiv:1312:1736

  • Dobbie PD, Burleigh MR, Levan AJ, Barstow MA, Napiwotzki R, Holberg JB, Hubeny I, Howell SB (2005) A near-infrared spectroscopic search for very-low-mass cool companions to notable DA white dwarfs. MNRAS 357:1049–1058. doi:10.1111/j.1365-2966.2005.08720.x; arXiv:astro-ph/0412222

  • Dupuy TJ, Kraus AL (2013) Distances, luminosities, and temperatures of the coldest known substellar objects. Science 341:1492–1495. doi:10.1126/science.1241917; arXiv:1309.1422

  • Dupuy TJ, Liu MC, Bowler BP, Cushing MC, Helling C, Witte S, Hauschildt P (2010) Studying the physical diversity of late-M dwarfs with dynamical masses. Ap J 721:1725–1747. doi:10.1088/0004-637X/721/2/1725; arXiv:1007.4197

  • Enoch ML, Brown ME, Burgasser AJ (2003) Photometric variability at the L/T dwarf boundary. Ap J 126:1006–1016. doi:10.1086/376598; arXiv:astro-ph/0305048

  • Faherty JK, Cruz KL, Rice EL, Riedel A (2013a) Young brown dwarfs as giant exoplanet analogs. Mem Societa Astronomica Italiana 84:955. arXiv:1307.8413

  • Faherty JK, Rice EL, Cruz KL, Mamajek EE, Núñez A (2013b) 2MASS J035523.37+113343.7: a young, dusty, nearby, isolated brown dwarf resembling a giant exoplanet. Ap J 145:2. doi:10.1088/0004-6256/145/1/2; arXiv:1206.5519

  • Faherty JK, Rice EL, Cruz KL, Mamajek EE, Núñez A (2013c) 2MASS J035523.37+113343.7: a young, dusty, nearby, isolated brown dwarf resembling a giant exoplanet. Ap J 145:2. doi:10.1088/0004-6256/145/1/2; arXiv:1206.5519

  • Farihi J, Christopher M (2004) A possible brown dwarf companion to the white dwarf GD 1400. Ap J 128:1868–1871. doi:10.1086/423919; arXiv:astro-ph/0407036

  • Fletcher LN, Orton GS, Yanamandra-Fisher P, Fisher BM, Parrish PD, Irwin PGJ (2009) Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging. Icarus 200:154–175. doi:10.1016/j.icarus.2008.11.019

    Article  ADS  Google Scholar 

  • Fletcher LN, Baines KH, Momary TW, Showman AP, Irwin PGJ, Orton GS, Roos-Serote M, Merlet C (2011) Saturn’s tropospheric composition and clouds from Cassini/VIMS 4.6-5.1 \(\mu \text{ m }\) nightside spectroscopy. Icarus 214:510–533. doi: 10.1016/j.icarus.2011.06.006

    Article  ADS  Google Scholar 

  • Fortney JJ, Lodders K, Marley MS, Freedman RS (2008) A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Ap J 678:1419–1435. doi:10.1086/528370; arXiv:0710.2558

  • Freytag B, Allard F, Ludwig HG, Homeier D, Steffen M (2010) The role of convection, overshoot, and gravity waves for the transport of dust in M dwarf and brown dwarf atmospheres. A&A 513:A19. doi:10.1051/0004-6361/200913354; arXiv:1002.3437

  • Geballe TR, Knapp GR, Leggett SK, Fan X, Golimowski DA, Anderson S, Brinkmann J, Csabai I, Gunn JE, Hawley SL, Hennessy G, Henry TJ, Hill GJ, Hindsley RB, Ivezić Ž, Lupton RH, McDaniel A, Munn JA, Narayanan VK, Peng E, Pier JR, Rockosi CM, Schneider DP, Smith JA, Strauss MA, Tsvetanov ZI, Uomoto A, York DG, Zheng W (2002) Toward spectral classification of L and T dwarfs: infrared and optical spectroscopy and analysis. Ap J 564:466–481. doi:10.1086/324078; arXiv:astro-ph/0108443

  • Gelino CR, Marley MS, Holtzman JA, Ackerman AS, Lodders K (2002) L dwarf variability: I-band observations. Ap J 577:433–446. doi:10.1086/342150; arXiv:astro-ph/0205305

  • Gillon M, Triaud AHMJ, Jehin E, Delrez L, Opitom C, Magain P, Lendl M, Queloz D (2013) Fast-evolving weather for the coolest of our two new substellar neighbours. A&A 555:L5. doi:10.1051/0004-6361/201321620; arXiv:1304.0481

  • Girardin F, Artigau É, Doyon R (2013) In search of dust clouds: photometric monitoring of a sample of late L and T dwarfs. Ap J 767:61. doi:10.1088/0004-637X/767/1/61

    Article  ADS  Google Scholar 

  • Gizis JE (1997) M-subdwarfs: spectroscopic classification and the metallicity scale. Ap J 113:806–822. doi:10.1086/118302; arXiv:astro-ph/9611222

  • Gizis JE, Monet DG, Reid IN, Kirkpatrick JD, Liebert J, Williams RJ (2000) New neighbors from 2MASS: activity and kinematics at the bottom of the main sequence. Ap J 120:1085–1099. doi:10.1086/301456; arXiv:astro-ph/0004361

  • Gizis JE, Shipman HL, Harvin JA (2005) First ultraviolet spectrum of a brown dwarf: evidence for \(\text{ H }_{2}\) fluorescence and accretion. Ap J 630:L89–L91. doi:10.1086/462414; arXiv:astro-ph/0507429

  • Göres A (1993) The formation of PAHs in C-type star environments. In: Klare G (ed) Reviews in modern astronomy, vol 6, pp 165–178

  • Güdel M, Benz AO (1993) X-ray/microwave relation of different types of active stars. Ap J 405:L63–L66. doi:10.1086/186766

    Article  ADS  Google Scholar 

  • Gustafsson B, Edvardsson B, Eriksson K, Jørgensen UG, Nordlund Å, Plez B (2008) A grid of MARCS model atmospheres for late-type stars I: methods and general properties. A&A 486:951–970. doi:10.1051/0004-6361:200809724; arXiv:0805.0554

  • Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I: mapping the zoo of laboratory collision experiments. A&A 513:A56. doi:10.1051/0004-6361/200912852; arXiv:0910.4251

  • Hall PB (2002) 2MASSI J1315309–264951: An L dwarf with strong and variable \(\text{ H }\alpha \) emission. Ap J 564:L89–L92. doi:10.1086/339020; arXiv:astro-ph/0112241

  • Hallinan G, Antonova A, Doyle JG, Bourke S, Brisken WF, Golden A (2006) Rotational modulation of the radio emission from the m9 dwarf tvlm 513–46546: broadband coherent emission at the substellar boundary? Ap J 653:690–699. doi:10.1086/508678

    Article  ADS  Google Scholar 

  • Hallinan G, Bourke S, Lane C, Antonova A, Zavala RT, Brisken WF, Boyle RP, Vrba FJ, Doyle JG, Golden A (2007) Periodic bursts of coherent radio emission from an ultracool dwarf. Ap J 663:L25–L28. doi:10.1086/519790; arXiv:0705.2054

  • Hallinan G, Antonova A, Doyle JG, Bourke S, Lane C, Golden A (2008) Confirmation of the electron cyclotron maser instability as the dominant source of radio emission from very low mass stars and brown dwarfs. Ap J 684:644–653. doi:10.1086/590360; http://adsabs.harvard.edu/abs/2008ApJ...684..644H; arXiv:0805.4010

  • Heinze AN, Metchev S, Apai D, Flateau D, Kurtev R, Marley M, Radigan J, Burgasser AJ, Artigau É, Plavchan P (2013) Weather on other worlds I: detection of periodic variability in the L3 dwarf DENIS-P J1058.7–1548 with precise multi-wavelength photometry. Ap J 767:173. doi:10.1088/0004-637X/767/2/173; arXiv:1303.2948

  • Helling C, Fomins A (2013) Modelling the formation of atmospheric dust in brown dwarfs and planetary atmospheres. R Soc Lond Philos Trans Ser A 371(10):581. doi:10.1098/rsta.2011.0581

    MathSciNet  Google Scholar 

  • Helling C, Woitke P (2006) Dust in brown dwarfs V: growth and evaporation of dirty dust grains. A&A 455:325–338. doi:10.1051/0004-6361:20054598

    Article  ADS  Google Scholar 

  • Helling C, Oevermann M, Lüttke MJH, Klein R, Sedlmayr E (2001) Dust in brown dwarfs I: dust formation under turbulent conditions on microscopic scales. A&A 376:194–212. doi:10.1051/0004-6361:20010937

    Article  ADS  Google Scholar 

  • Helling C, Klein R, Woitke P, Nowak U, Sedlmayr E (2004) Dust in brown dwarfs IV: dust formation and driven turbulence on mesoscopic scales. A&A 423:657–675. doi:10.1051/0004-6361:20034514; arXiv:astro-ph/0404272

  • Helling C, Ackerman A, Allard F, Dehn M, Hauschildt P, Homeier D, Lodders K, Marley M, Rietmeijer F, Tsuji T, Woitke P (2008a) A comparison of chemistry and dust cloud formation in ultracool dwarf model atmospheres. MNRAS 391:1854–1873. doi:10.1111/j.1365-2966.2008.13991.x; arXiv:0809.3657

  • Helling C, Dehn M, Woitke P, Hauschildt PH (2008b) Consistent simulations of substellar atmospheres and nonequilibrium dust cloud formation. Ap J 675:L105–L108. doi:10.1086/533462; arXiv:0801.3733

  • Helling C, Woitke P, Thi WF (2008c) Dust in brown dwarfs and extra-solar planets I: chemical composition and spectral appearance of quasi-static cloud layers. A&A 485:547–560. doi:10.1051/0004-6361:20078220 ; arXiv:0803.4315

  • Helling C, Jardine M, Mokler F (2011a) Ionization in atmospheres of brown dwarfs and extrasolar planets II: dust-induced collisional ionization. Ap J 737:38. doi:10.1088/0004-637X/737/1/38; arXiv:1105.4409

  • Helling C, Jardine M, Witte S, Diver DA (2011b) Ionization in atmospheres of brown dwarfs and extrasolar planets I: the role of electron Avalanche. Ap J 727:4. doi:10.1088/0004-637X/727/1/4; arXiv:1010.4389

  • Helling C, Jardine M, Stark C, Diver D (2013) Ionization in atmospheres of brown dwarfs and extrasolar planets III: breakdown conditions for mineral clouds. Ap J 767:136. doi:10.1088/0004-637X/767/2/136; arXiv:1301.7586

  • Henry RBC, Worthey G (1999) The distribution of heavy elements in spiral and elliptical galaxies. PASP 111:919–945. doi:10.1086/316403; arXiv:astro-ph/9904017

  • Hill C, Yurchenko SN, Tennyson J (2013) Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres. Icarus 226:1673–1677. doi:10.1016/j.icarus.2012.07.028; arXiv:1205.6514

  • Iraci LT, Phebus BD, Stone BM, Colaprete A (2010) Water ice cloud formation on Mars is more difficult than presumed: Laboratory studies of ice nucleation on surrogate materials. Icarus 210:985–991. doi:10.1016/j.icarus.2010.07.020

    Article  ADS  Google Scholar 

  • James DJ, Jardine MM, Jeffries RD, Randich S, Collier Cameron A, Ferreira M (2000) X-ray emission from nearby M-dwarfs: the super-saturation phenomenon. MNRAS 318:1217–1226. doi:10.1046/j.1365-8711.2000.03838.x; arXiv:astro-ph/0007159

  • Joergens V (ed) (2014) 50 years of brown dwarfs: from prediction to discovery to forefront of research. Astrophys Sp Sci Libr vol 401. doi:10.1007/978-3-319-01162-2

  • Khandrika H, Burgasser AJ, Melis C, Luk C, Bowsher E, Swift B (2013) A Search for photometric variability in L- and T-type brown dwarf atmospheres. Ap J 145:71. doi:10.1088/0004-6256/145/3/71; arXiv:1301.0545

  • Kirkpatrick JD (2013) Cold brown dwarfs with WISE: Y dwarfs and the field mass function. Astronomische Nachrichten 334:26–31. doi:10.1002/asna.201211759

    Article  ADS  Google Scholar 

  • Kirkpatrick JD, Reid IN, Liebert J, Cutri RM, Nelson B, Beichman CA, Dahn CC, Monet DG, Gizis JE, Skrutskie MF (1999) Dwarfs cooler than “M” the definition of spectral type ‘L’ using discoveries from the 2 micron all-sky survey (2MASS). Ap J 519:802–833. doi:10.1086/307414

  • Kirkpatrick JD, Cruz KL, Barman TS, Burgasser AJ, Looper DL, Tinney CG, Gelino CR, Lowrance PJ, Liebert J, Carpenter JM, Hillenbrand LA, Stauffer JR (2008) A sample of very young field L dwarfs and implications for the brown dwarf “Lithium Test” at early ages. Ap J 689:1295–1326. doi:10.1086/592768; arXiv:0808.3153

  • Kirkpatrick JD, Looper DL, Burgasser AJ, Schurr SD, Cutri RM, Cushing MC, Cruz KL, Sweet AC, Knapp GR, Barman TS, Bochanski JJ, Roellig TL, McLean IS, McGovern MR, Rice EL (2010) Discoveries from a near-infrared proper motion survey using multi-epoch two micron all-sky survey data. Ap J 190:100–146. doi:10.1088/0067-0049/190/1/100; arXiv:1008.3591

  • Kirkpatrick JD, Cushing MC, Gelino CR, Griffith RL, Skrutskie MF, Marsh KA, Wright EL, Mainzer A, Eisenhardt PR, McLean IS, Thompson MA, Bauer JM, Benford DJ, Bridge CR, Lake SE, Petty SM, Stanford SA, Tsai CW, Bailey V, Beichman CA, Bloom JS, Bochanski JJ, Burgasser AJ, Capak PL, Cruz KL, Hinz PM, Kartaltepe JS, Knox RP, Manohar S, Masters D, Morales-Calderón M, Prato LA, Rodigas TJ, Salvato M, Schurr SD, Scoville NZ, Simcoe RA, Stapelfeldt KR, Stern D, Stock ND, Vacca WD (2011) The first hundred brown dwarfs discovered by the wide-field infrared survey explorer (WISE). Ap J 197:19. doi:10.1088/0067-0049/197/2/19; arXiv:1108.4677

  • Kirkpatrick JD, Gelino CR, Cushing MC, Mace GN, Griffith RL, Skrutskie MF, Marsh KA, Wright EL, Eisenhardt PR, McLean IS, Mainzer AK, Burgasser AJ, Tinney CG, Parker S, Salter G (2012) Further defining spectral type “Y” and exploring the low-mass end of the field brown dwarf mass function. Ap J 753:156. doi:10.1088/0004-637X/753/2/156; arXiv:1205.2122

  • Kirkpatrick JD, Cushing MC, Gelino CR, Beichman CA, Tinney CG, Faherty JK, Schneider A, Mace GN (2013) Discovery of the Y1 dwarf WISE J064723.23–623235.5. Ap J 776:128. doi:10.1088/0004-637X/776/2/128; arXiv:1308.5372

  • Kirkpatrick JD, Schneider A, Fajardo-Acosta S, Gelino CR, Mace GN, Wright EL, Logsdon SE, McLean IS, Cushing MC, Skrutskie MF, Eisenhardt PR, Stern D, Balokovic M, Burgasser AJ, Faherty JK, Lansbury GB, Rich JA, Skrzypek N, Fowler JW, Cutri RM, Masci FJ, Conrow T, Grillmair CJ, McCallon HL, Beichman CA, Marsh KA (2014) The AllWISE motion survey and the quest for cold subdwarfs. arXiv:1402:0661

  • Knutson HA, Charbonneau D, Cowan NB, Fortney JJ, Showman AP, Agol E, Henry GW, Everett ME, Allen LE (2009) Multiwavelength constraints on the day-night circulation patterns of HD 189733b. Ap J 690:822–836. doi:10.1088/0004-637X/690/1/822; arXiv:0802.1705

  • Konopka U, Mokler F, Ivlev AV, Kretschmer M, Morfill GE, Thomas HM, Rothermel H, Fortov VE, Lipaev AM, Molotkov VI, Nefedov AP, Baturin YM, Budarin Y, Ivanov AI, Roth M (2005) Charge-induced gelation of microparticles. New J Phys 7:227. doi:10.1088/1367-2630/7/1/227

    Article  Google Scholar 

  • Lee JM, Heng K, Irwin PGJ (2013) Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b. Ap J 778:97. doi:10.1088/0004-637X/778/2/97; arXiv:1307.1404

  • Lépine S, Rich RM, Shara MM (2007) Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs (usdM). Ap J 669:1235–1247. doi:10.1086/521614; arXiv:0707.2993

  • Liebert J, Kirkpatrick JD, Cruz KL, Reid IN, Burgasser A, Tinney CG, Gizis JE (2003) A flaring L5 dwarf: the nature of \(\text{ H }\alpha \) emission in very low mass (sub)stellar objects. Ap J 125:343–347. doi:10.1086/345514; arXiv:astro-ph/0210348

  • Line MR, Fortney JJ, Marley MS, Sorahana S (2014) An approach for retrieving temperatures and abundances in brown dwarf atmospheres. arXiv:1403:6412

  • Littlefair SP, Dhillon VS, Marsh TR, Shahbaz T, Martín EL, Copperwheat C (2008) Optical variability of the ultracool dwarf TVLM 513–46546: evidence for inhomogeneous dust clouds. MNRAS 391:L88–L92. doi:10.1111/j.1745-3933.2008.00562.x; arXiv:0809.2193

  • Liu MC, Dupuy TJ, Leggett SK (2010) Discovery of a highly unequal-mass binary T dwarf with Keck Laser guide star adaptive optics: a coevality test of substellar theoretical models and effective temperatures. Ap J 722:311–328. doi:10.1088/0004-637X/722/1/311; arXiv:1008.2200

  • Lodders K, Fegley B (2002) Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars I: carbon, nitrogen, and oxygen. Icarus 155:393–424. doi:10.1006/icar.2001.6740

    Article  ADS  Google Scholar 

  • Lodders K, Fegley B Jr (2006) Chemistry of low mass substellar objects. p 1. doi:10.1007/3-540-30313-8_1

  • Lodieu N, Zapatero Osorio MR, Martín EL, Solano E, Aberasturi M (2010) GTC/OSIRIS spectroscopic identification of a faint L subdwarf in the UKIRT infrared deep sky survey. Ap J 708:L107–L111. doi:10.1088/2041-8205/708/2/L107; arXiv:0912.3364

  • Lodieu N, Espinoza Contreras M, Zapatero Osorio MR, Solano E, Aberasturi M, Martín EL (2012) New ultracool subdwarfs identified in large-scale surveys using virtual observatory tools I: UKIDSS LAS DR5 vs. SDSS DR7. A&A 542:A105. doi:10.1051/0004-6361/201118717; arXiv:1204.4328

  • Lucas PW, Roche PF, Allard F, Hauschildt PH (2001) Infrared spectroscopy of substellar objects in Orion. MNRAS 326:695–721. doi:10.1046/j.1365-8711.2001.04666.x; arXiv:astro-ph/0105154

  • Ludwig HG, Allard F, Hauschildt PH (2002) Numerical simulations of surface convection in a late M-dwarf. A&A 395:99–115. doi:10.1051/0004-6361:20021153; arXiv:astro-ph/0208584

  • Luhman KL (2012) The formation and early evolution of low-mass stars and brown dwarfs. ARA&A 50:65–106. doi:10.1146/annurev-astro-081811-125528; arXiv:1208.5800

  • Luhman KL (2013) Discovery of a binary brown dwarf at 2 pc from the Sun. Ap J 767:L1. doi:10.1088/2041-8205/767/1/L1; arXiv:1303.2401

  • Luhman KL (2014) Discovery of a\({}^{\sim }\)250 K brown dwarf at 2 pc from the Sun. Ap J 786:L18. doi:10.1088/2041-8205/786/2/L18; arXiv:1404.6501

  • Luhman KL, Burgasser AJ, Bochanski JJ (2011) Discovery of a candidate for the coolest known brown dwarf. Ap J 730:L9. doi:10.1088/2041-8205/730/1/L9; arXiv:1102.5411

  • Luhman KL, Burgasser AJ, Labbé I, Saumon D, Marley MS, Bochanski JJ, Monson AJ, Persson SE (2012) Confirmation of one of the coldest known brown dwarfs. Ap J 744:135. doi:10.1088/0004-637X/744/2/135; arXiv:1110.4353

  • Lunine JI, Hubbard WB, Marley MS (1986) Evolution and infrared spectra of brown dwarfs. Ap J 310:238–260. doi:10.1086/164678

    Article  ADS  Google Scholar 

  • Mace GN, Kirkpatrick JD, Cushing MC, Gelino CR, McLean IS, Logsdon SE, Wright EL, Skrutskie MF, Beichman CA, Eisenhardt PR, Kulas KR (2013) The exemplar T8 subdwarf companion of Wolf 1130. Ap J 777:36. doi:10.1088/0004-637X/777/1/36; arXiv:1309.1500

  • Madhusudhan N, Seager S (2009) A temperature and abundance retrieval method for exoplanet atmospheres. Ap J 707:24–39. doi:10.1088/0004-637X/707/1/24; arXiv:0910.1347

  • Madhusudhan N, Burrows A, Currie T (2011) Model atmospheres for massive gas giants with thick clouds: application to the HR 8799 planets and predictions for future detections. Ap J 737:34. doi:10.1088/0004-637X/737/1/34; arXiv:1102.5089

  • Marley MS, Saumon D, Goldblatt C (2010) A patchy cloud model for the L to T dwarf transition. Ap J 723:L117–L121. doi:10.1088/2041-8205/723/1/L117; arXiv:1009.6217

  • Marley MS, Saumon D, Cushing M, Ackerman AS, Fortney JJ, Freedman R (2012) Masses, radii, and cloud properties of the HR 8799 planets. Ap J 754:135. doi:10.1088/0004-637X/754/2/135; arXiv:1205.6488

  • Marley MS, Ackerman AS, Cuzzi JN, Kitzmann D (2013) Clouds and hazes in exoplanet atmospheres. arXiv:1301:5627

  • Martín EL, Delfosse X, Basri G, Goldman B, Forveille T, Zapatero Osorio MR (1999) Spectroscopic classification of late-M and L field dwarfs. Ap J 118:2466–2482. doi:10.1086/301107

  • Maxted PFL, Napiwotzki R, Dobbie PD, Burleigh MR (2006) Survival of a brown dwarf after engulfment by a red giant star. Nature 442:543–545. doi:10.1038/nature04987; arXiv:astro-ph/0608054

  • McLean M, Berger E, Irwin J, Forbrich J, Reiners A (2011) Periodic radio emission from the M7 dwarf 2MASS J13142039+1320011: implications for the magnetic field topology. Ap J 741:27. doi:10.1088/0004-637X/741/1/27; arXiv:1107.1516

  • Metchev S, Apai D, Radigan J, Artigau É, Heinze A, Helling C, Homeier D, Littlefair S, Morley C, Skemer A, Stark C (2013) Clouds in brown dwarfs and giant planets. Astronomische Nachrichten 334:40–43. doi:10.1002/asna.201211776

    Article  ADS  Google Scholar 

  • Mihalas DM (1978) Stellar atmospheres, 2nd edn. W. H. Freeman & Co Ltd. ISBN-10: 0716703599; ISBN-13: 978-0716703594

  • Mohanty S, Basri G, Shu F, Allard F, Chabrier G (2002) Activity in very cool stars: magnetic dissipation in late M and L dwarf atmospheres. Ap J 571:469–486. doi:10.1086/339911; arXiv:astro-ph/0201518

  • Morin J, Donati JF, Petit P, Delfosse X, Forveille T, Jardine MM (2010) Large-scale magnetic topologies of late M dwarfs. MNRAS 407:2269–2286. doi:10.1111/j.1365-2966.2010.17101.x; arXiv:1005.5552

  • Morioka A, Miyoshi Y, Kitamura N, Misawa H, Tsuchiya F, Menietti JD, Honary F (2012) Fundamental characteristics of field-aligned auroral acceleration derived from akr spectra. JGR 117(A2):A02,213. doi:10.1029/2011ja017137

  • Morley CV, Fortney JJ, Marley MS, Visscher C, Saumon D, Leggett SK (2012) Neglected clouds in T and Y dwarf atmospheres. Ap J 756:172. doi:10.1088/0004-637X/756/2/172; arXiv:1206.4313

  • Morley CV, Marley MS, Fortney JJ, Lupu R (2014a) Spectral variability from the patchy atmospheres of T and Y dwarfs. Ap J arXiv:1406.0863

  • Morley CV, Marley MS, Fortney JJ, Lupu R, Saumon D, Greene T, Lodders K (2014b) Water clouds in Y dwarfs and exoplanets. Ap J. arXiv:1404:0005

  • Moses JI, Visscher C, Fortney JJ, Showman AP, Lewis NK, Griffith CA, Klippenstein SJ, Shabram M, Friedson AJ, Marley MS, Freedman RS (2011) Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of HD 189733b and HD 209458b. Ap J 737:15. doi:10.1088/0004-637X/737/1/15; arXiv:1102.0063

  • Nakajima T, Oppenheimer BR, Kulkarni SR, Golimowski DA, Matthews K, Durrance ST (1995) Discovery of a cool brown dwarf. Nature 378:463–465. doi:10.1038/378463a0

    Article  ADS  Google Scholar 

  • Nichols JD, Burleigh MR, Casewell SL, Cowley SWH, Wynn GA, Clarke JT, West AA (2012) Origin of electron cyclotron maser induced radio emissions at ultracool dwarfs: magnetosphere-ionosphere coupling currents. Ap J 760(1):59. doi:10.1088/0004-637x/760/1/59

    Article  ADS  Google Scholar 

  • Noll KS, Geballe TR, Marley MS (1997) Detection of abundant carbon monoxide in the brown dwarf Gliese 229B. Ap J 489:L87. doi:10.1086/310954

    Article  ADS  Google Scholar 

  • Noyes RW, Hartmann LW, Baliunas SL, Duncan DK, Vaughan AH (1984) Rotation, convection, and magnetic activity in lower main-sequence stars. Ap J 279:763–777. doi:10.1086/161945

    Article  ADS  Google Scholar 

  • Osten RA, Hawley SL, Bastian TS, Reid IN (2006) The radio spectrum of TVLM 513–46546: constraints on the coronal properties of a late M dwarf. Ap J 637:518–521. doi:10.1086/498345; arXiv:astro-ph/0509762

  • Patience J, King RR, De Rosa RJ, Vigan A, Witte S, Rice E, Helling C, Hauschildt P (2012) Spectroscopy across the brown dwarf/planetary mass boundary I: near-infrared JHK spectra. A&A 540:A85. doi:10.1051/0004-6361/201118058; arXiv:1201.3921

  • Peña Ramírez K, Béjar VJS, Zapatero Osorio MR, Petr-Gotzens MG, Martín EL (2012) New isolated planetary-mass objects and the stellar and substellar mass function of the \(\sigma \) Orionis cluster. Ap J 754:30. doi:10.1088/0004-637X/754/1/30; arXiv:1205.4950

  • Pereira TMD, Asplund M, Collet R, Thaler I, Trampedach R, Leenaarts J (2013) How realistic are solar model atmospheres? A&A 554:A118. doi:10.1051/0004-6361/201321227; arXiv:1304.4932

  • Pinfield DJ, Jones HRA, Lucas PW, Kendall TR, Folkes SL, Day-Jones AC, Chappelle RJ, Steele IA (2006) Finding benchmark brown dwarfs to probe the substellar initial mass function as a function of time. MNRAS 368:1281–1295. doi:10.1111/j.1365-2966.2006.10213.x arXiv:astro-ph/0603320

  • Pizzolato N, Maggio A, Micela G, Sciortino S, Ventura P (2003) The stellar activity-rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. A&A 397:147–157. doi:10.1051/0004-6361:20021560

    Article  ADS  Google Scholar 

  • Radigan J, Jayawardhana R, Lafrenière D, Artigau É, Marley M, Saumon D (2012) Large-amplitude variations of an L/T transition brown dwarf: multi-wavelength observations of patchy. High-contrast cloud features. Ap J 750:105. doi:10.1088/0004-637X/750/2/105; arXiv:1201.3403

  • Radigan J, Lafrenière D, Jayawardhana R, Artigau E (2014) Strong brightness variations signal cloudy-to-clear transition of brown dwarfs. arXiv:1404.3247

  • Rajpurohit AS, Reylé C, Schultheis M, Leinert C, Allard F, Homeier D, Ratzka T, Abraham P, Moster B, Witte S, Ryde N (2012) The very low mass multiple system LHS 1070: a testbed for model atmospheres for the lower end of the main sequence. A&A 545:A85. doi:10.1051/0004-6361/201219029; arXiv:1208.0452

  • Ravi V, Hallinan G, Hobbs G, Champion DJ (2011) The magnetosphere of the ultracool dwarf DENIS 1048–3956. Ap J 735:L2. doi:10.1088/2041-8205/735/1/L2; arXiv:1105.0990

  • Rebolo R, Zapatero Osorio MR, Martín EL (1995) Discovery of a brown dwarf in the Pleiades star cluster. Nature 377:129–131. doi:10.1038/377129a0

    Article  ADS  Google Scholar 

  • Reid IN, Burgasser AJ, Cruz KL, Kirkpatrick JD, Gizis JE (2001) Near-infrared spectral classification of late M and L dwarfs. Ap J 121:1710–1721. doi:10.1086/319418; arXiv:astro-ph/0012275

  • Reid IN, Cruz KL, Kirkpatrick JD, Allen PR, Mungall F, Liebert J, Lowrance P, Sweet A (2008) Meeting the cool neighbors X: ultracool dwarfs from the 2MASS all-sky data release. Ap J 136:1290–1311. doi:10.1088/0004-6256/136/3/1290

    ADS  Google Scholar 

  • Reiners A, Basri G, Christensen UR (2009) Surprisingly weak magnetism on young accreting brown dwarfs. Ap J 697:373–379. doi:10.1088/0004-637X/697/1/373; arXiv:0903.0857

  • Rice EL, Faherty JK, Cruz K, Barman T, Looper D, Malo L, Mamajek EE, Metchev S, Shkolnik EL (2011) Juvenile ultracool dwarfs. In: Johns-Krull C, Browning MK, West AA (eds) 16th Cambridge workshop on cool stars, stellar systems, and the Sun, Astronomical Society of the Pacific conference series, vol 448, p 481. arXiv:1101.4231

  • Rimmer PB, Helling C (2013) Ionization in atmospheres of brown dwarfs and extrasolar planets IV: the effect of cosmic rays. Ap J 774:108. doi:10.1088/0004-637X/774/2/108; arXiv:1307.3257

  • Rimmer PB, Helling C, Bilger C (2014) The influence of galactic cosmic rays on ion-neutral hydrocarbon chemistry in the upper atmospheres of free-floating exoplanets. arXiv:1312.1138

  • Robinson TD, Marley MS (2014) Temperature fluctuations as a source of brown dwarf variability. arXiv:1403.2438

  • Rojas-Ayala B, Hilton EJ, Mann AW, Lépine S, Gaidos E, Bonfils X, Helling C, Henry TJ, Rogers LA, von Braun K, Youdin A (2013) M dwarf stars in the light of (future) exoplanet searches. Astronomische Nachrichten 334:155. doi:10.1002/asna.201211760; arXiv:1211.0544

  • Rossow WB (1978) Cloud microphysics: analysis of the clouds of Earth, Venus, Mars, and Jupiter. Icarus 36:1–50. doi:10.1016/0019-1035(78)90072-6

    Article  ADS  Google Scholar 

  • Route M, Wolszczan A (2012) The arecibo detection of the coolest radio-flaring brown dwarf. Ap J 747(2):L22. doi:10.1088/2041-8205/747/2/l22

    Article  ADS  Google Scholar 

  • Sarro LM, Berihuete A, Carrión C, Barrado D, Cruz P, Isasi Y (2013) Properties of ultra-cool dwarfs with Gaia: an assessment of the accuracy for the temperature determination. A&A 550:A44. doi:10.1051/0004-6361/201219867; arXiv:1212.3096

  • Saumon D, Bergeron P, Lunine JI, Hubbard WB, Burrows A (1994) Cool zero-metallicity stellar atmospheres. Ap J 424:333–344. doi:10.1086/173892

    Article  ADS  Google Scholar 

  • Saumon D, Geballe TR, Leggett SK, Marley MS, Freedman RS, Lodders K, Fegley B Jr, Sengupta SK (2000) Molecular abundances in the atmosphere of the T dwarf GL 229B. Ap J 541:374–389. doi:10.1086/309410; astro-ph/0003353

  • Saunders RW, Forster PM, Plane JMC (2007) Potential climatic effects of meteoric smoke in the Earth’s paleo-atmosphere. Geophys Rev Lett 34:L16801. doi:10.1029/2007GL029648

    Article  ADS  Google Scholar 

  • Schmidt SJ, Cruz KL, Bongiorno BJ, Liebert J, Reid IN (2007) Activity and kinematics of ultracool dwarfs, including an amazing flare observation. Ap J 133:2258–2273. doi:10.1086/512158; arXiv:astro-ph/0701055

  • Showman AP, Kaspi Y (2013a) Atmospheric dynamics of brown dwarfs and directly imaged giant planets. Ap J 776:85. doi:10.1088/0004-637X/776/2/85; arXiv:1210.7573

  • Showman AP, Kaspi Y (2013b) Atmospheric dynamics of brown dwarfs and directly imaged giant planets. Ap J 776:85. doi:10.1088/0004-637X/776/2/85; arXiv:1210.7573

  • Sinclair JA, Helling C, Greaves JS (2010) The impact of stellar model spectra in disc detection. MNRAS 409:L49–L53. doi:10.1111/j.1745-3933.2010.00945.x

    Article  ADS  Google Scholar 

  • Sivarani T, Lépine S, Kembhavi AK, Gupchup J (2009) SDSS J125637–022452: a high proper motion L subdwarf. Ap J 694:L140–L143. doi:10.1088/0004-637X/694/2/L140; arXiv:0901.3382

  • Siverd RJ et al (2012) KELT-1b: a strongly irradiated, highly inflated, short period, 27 Jupiter-mass companion transiting a Mid-F Star. Ap J 761:123. doi:10.1088/0004-637X/761/2/123; arXiv:1206.1635

  • Sorahana S, Yamamura I, Murakami H (2013) On the radii of brown dwarfs measured with AKARI near-infrared spectroscopy. Ap J 767:77. doi:10.1088/0004-637X/767/1/77; arXiv:1304.1259

  • Sorahana S, Suzuki TK, Yamamura I (2014) A signature of chromospheric activity in brown dwarfs revealed by 2.5-5.0 Micron AKARI spectra. arXiv:1401.5801

  • Southworth J (2009) Homogeneous studies of transiting extrasolar planets II: physical properties. MNRAS 394:272–294. doi:10.1111/j.1365-2966.2008.14274.x; arXiv:0811.3277

  • Spezzi L, Alves de Oliveira C, Moraux E, Bouvier J, Winston E, Hudelot P, Bouy H, Cuillandre JC (2012) Searching for planetary-mass T-dwarfs in the core of Serpens. A&A 545:A105. doi:10.1051/0004-6361/201219559; arXiv:1208.0702

  • Stark CR, Helling C, Diver DA, Rimmer PB (2013) Ionization in atmospheres of brown dwarfs and extrasolar planets. V. Alfvén ionization. Ap J 776:11. doi:10.1088/0004-637X/776/1/11; arXiv:1308.2991

  • Steele PR, Saglia RP, Burleigh MR, Marsh TR, Gänsicke BT, Lawrie K, Cappetta M, Girven J, Napiwotzki R (2013) NLTT 5306: the shortest period detached white dwarf+brown dwarf binary. MNRAS 429:3492–3500. doi:10.1093/mnras/sts620; arXiv:1212.2899

  • Stelzer B, Neuhäuser R (2003) X-ray emission from old and intermediate age brown dwarfs. In: Martín E (ed) Brown dwarfs, IAU symposium, vol 211, p 443. arXiv:astro-ph/0206284

  • Stelzer B, Micela G, Flaccomio E, Neuhäuser R, Jayawardhana R (2006) X-ray emission of brown dwarfs: towards constraining the dependence on age, luminosity, and temperature. A&A 448:293–304. doi:10.1051/0004-6361:20053677; arXiv:astro-ph/0511168

  • Stewart RT, Innis JL, Slee OB, Nelson GJ, Wright AE (1988) A relation between radio luminosity and rotation for late-type stars. Ap J 96:371–377. doi:10.1086/114815

    ADS  Google Scholar 

  • Tinney CG, Tolley AJ (1999a) Searching for weather in brown dwarfs. MNRAS 304:119–126. doi:10.1046/j.1365-8711.1999.02297.x; arXiv:astro-ph/9809165

  • Tinney CG, Tolley AJ (1999b) Searching for weather in brown dwarfs. MNRAS 304:119–126. doi:10.1046/j.1365-8711.1999.02297.x; arXiv:astro-ph/9809165

  • Treumann R (2006) The electron-cyclotron maser for astrophysical application. A&A Rev 13(4):229–315. doi:10.1007/s00159-006-0001-y

    Article  ADS  Google Scholar 

  • Triaud AHMJ, Gillon M, Selsis F, Winn JN, Demory BO, Artigau E, Laughlin GP, Seager S, Helling C, Mayor M, Albert L, Anderson RI, Bolmont E, Doyon R, Forveille T, Hagelberg J, Leconte J, Lendl M, Littlefair S, Raymond S, Sahlmann J (2013) A search for rocky planets transiting brown dwarfs. arXiv:1304.7248

  • Tsuji T (2001) Unified model photospheres for ultracool dwarfs of types L and T. In: Jones HRA, Steele IA (eds) Ultracool dwarfs: new spectral types L and T, p 9. arXiv:astro-ph/0103395

  • Tsuji T (2002) Dust in the photospheric environment: unified cloudy models of M, L, and T dwarfs. Ap J 575:264–290. doi:10.1086/341262; arXiv:astro-ph/0204401

  • Tsuji T (2005) Dust in the photospheric environment III: a fundamental element in the characterization of ultracool dwarfs. Ap J 621:1033–1048. doi:10.1086/427747; arXiv:astro-ph/0411766

  • Tsuji T, Ohnaka K, Aoki W (1996a) Dust formation in stellar photospheres: a case of very low mass stars and a possible resolution on the effective temperature scale of M dwarfs. A&A 305:L1

    ADS  Google Scholar 

  • Tsuji T, Ohnaka K, Aoki W, Nakajima T (1996b) Evolution of dusty photospheres through red to brown dwarfs: how dust forms in very low mass objects. A&A 308:L29–L32

    ADS  Google Scholar 

  • Tsuji T, Nakajima T, Yanagisawa K (2004) Dust in the photospheric environment II: effect on the near-infrared spectra of L and T dwarfs. Ap J 607:511–529. doi:10.1086/383300; arXiv:astro-ph/0402192

  • Tsuji T, Yamamura I, Sorahana S (2011) AKARI observations of brown dwarfs II: \(\text{ CO }_{2}\) as probe of carbon and oxygen abundances in brown dwarfs. Ap J 734:73. doi:10.1088/0004-637X/734/2/73; arXiv:1105.6303

  • Venot O, Hébrard E, Agúndez M, Dobrijevic M, Selsis F, Hersant F, Iro N, Bounaceur R (2012) A chemical model for the atmosphere of hot Jupiters. A&A 546:A43. doi:10.1051/0004-6361/201219310; arXiv:1208.0560

  • Wada K, Tanaka H, Okuzumi S, Kobayashi H, Suyama T, Kimura H, Yamamoto T (2013) Growth efficiency of dust aggregates through collisions with high mass ratios. A&A 559:A62. doi:10.1051/0004-6361/201322259

    Article  ADS  Google Scholar 

  • Williams PKG (2013) The observed rotation/activity relations of ultracool dwarfs. Mem Societa Astronomica Italiana 84:1122

    ADS  Google Scholar 

  • Williams PKG, Berger E, Zauderer BA (2013a) Quasi-quiescent radio emission from the first radio-emitting T dwarf. Ap J 767:L30. doi:10.1088/2041-8205/767/2/L30; arXiv:1301.2321

  • Williams PKG, Cook BA, Berger E (2013b) Trends in ultracool dwarf magnetism I: X-ray suppression and radio enhancement. arXiv:1310.6757

  • Wilson PA, Rajan A, Patience J (2014) The brown dwarf atmosphere monitoring (BAM) project I: the largest near-IR monitoring survey of L and T dwarfs. A&A 566:A111. doi:10.1051/0004-6361/201322995; arXiv:1404.4633

  • Witte S, Helling C, Hauschildt PH (2009) Dust in brown dwarfs and extra-solar planets II: cloud formation for cosmologically evolving abundances. A&A 506:1367–1380. doi:10.1051/0004-6361/200811501; arXiv:0908.3597

  • Witte S, Helling C, Barman T, Heidrich N, Hauschildt PH (2011) Dust in brown dwarfs and extra-solar planets III: testing synthetic spectra on observations. A&A 529:A44. doi:10.1051/0004-6361/201014105

    Article  ADS  Google Scholar 

  • Woitke P (2006) Too little radiation pressure on dust in the winds of oxygen-rich AGB stars. A&A 460:L9–L12. doi:10.1051/0004-6361:20066322; arXiv:astro-ph/0609392

  • Woitke P, Helling C (2003) Dust in brown dwarfs II: the coupled problem of dust formation and sedimentation. A&A 399:297–313. doi:10.1051/0004-6361:20021734

    Article  ADS  Google Scholar 

  • Woitke P, Helling C (2004) Dust in brown dwarfs III: formation and structure of quasi-static cloud layers. A&A 414:335–350. doi:10.1051/0004-6361:20031605

    Article  ADS  Google Scholar 

  • Yamamura I, Tsuji T, Tanabé T (2010) AKARI observations of brown dwarfs I: CO and \(\text{ CO }_{2}\) bands in the near-infrared spectra. Ap J 722:682–698. doi:10.1088/0004-637X/722/1/682; arXiv:1008.3732

  • Yuan TT, Kewley LJ, Swinbank AM, Richard J, Livermore RC (2011) Metallicity gradient of a lensed face-on spiral galaxy at Redshift 1.49. Ap J 732:L14. doi:10.1088/2041-8205/732/1/L14; arXiv:1103.3277

  • Zhang X, Showman AP (2014) Atmospheric circulation of brown dwarfs: jets, vortices, and time variability. arXiv:1403.2143

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Helling.

Additional information

ChH highlights financial support of the European Community under the FP7 by an ERC starting grant. SLC acknowledges financial support of University of Leicester. V. Wild is thanked for ’large-scale metallicity gradients’. M. Marley, A. Scholz, I. Vorgul, P. Rimmer, T. Robinson, I. Leonhardt are thanked for reading the manuscript. The authors thank D. Saumon, M. Cushing and J.D. Kirkpatrick for kindly providing spectra. This research has benefited from the SpeX Prism Spectral Libraries, maintained by Adam Burgasser and the IRTF spectral library maintained by Mike Cushing. Most literature search was performed using the NASA Astrophysics Data System ADS. Our local computer support is highly acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helling, C., Casewell, S. Atmospheres of brown dwarfs. Astron Astrophys Rev 22, 80 (2014). https://doi.org/10.1007/s00159-014-0080-0

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00159-014-0080-0

Keywords

Navigation