Skip to main content
Log in

Radio and millimeter continuum surveys and their astrophysical implications

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

We review the statistical properties of the main populations of radio sources, as emerging from radio and millimeter sky surveys. Recent determinations of local luminosity functions are presented and compared with earlier estimates still in widespread use. A number of unresolved issues are discussed. These include: the (possibly luminosity-dependent) decline of source space densities at high redshifts; the possible dichotomies between evolutionary properties of low- versus high-luminosity and of flat- versus steep-spectrum AGN-powered radio sources; and the nature of sources accounting for the upturn of source counts at sub-milli-Jansky (mJy) levels. It is shown that straightforward extrapolations of evolutionary models, accounting for both the far-IR counts and redshift distributions of star-forming galaxies, match the radio source counts at flux-density levels of tens of μJy remarkably well. We consider the statistical properties of rare but physically very interesting classes of sources, such as GHz Peak Spectrum and ADAF/ADIOS sources, and radio afterglows of γ-ray bursts. We also discuss the exploitation of large-area radio surveys to investigate large-scale structure through studies of clustering and the Integrated Sachs–Wolfe effect. Finally, we briefly describe the potential of the new and forthcoming generations of radio telescopes. A compendium of source counts at different frequencies is given in Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afshordi N, Tolley AJ (2008) Primordial non-Gaussianity, statistics of collapsed objects, and the integrated Sachs–Wolfe effect. Phys Rev D 78: 123507

    ADS  Google Scholar 

  • Afshordi N, Geshnizjani G, Khoury J (2008) Observational evidence for cosmological-scale extra dimensions. ArXiv e-prints 0812.2244

  • Aghanim N, Balland C, Silk J (2000) Sunyaev–Zel’dovich constraints from black hole-seeded proto-galaxies. Astron Astrophys 357: 1–6

    ADS  Google Scholar 

  • Agol E (2000) Sagittarius A* polarization: no advection-dominated accretion flow, low accretion rate, and nonthermal synchrotron emission. Astrophys J Lett 538: L121–L124

    ADS  Google Scholar 

  • Aitken DK, Greaves J, Chrysostomou A et al (2000) Detection of polarized millimeter and submillimeter emission from Sagittarius A*. Astrophys J Lett 534: L173–L176

    ADS  Google Scholar 

  • Aller MF, Aller HD, Hughes PA (2003) Survey of variability. In: Zensus JA, MH Cohen MH, Ros E (eds) Radio astronomy at the Fringe. Astronomical Society of the Pacific Conference Series, vol 300. Astronomical Society of the Pacific, San Francisco, pp 159–168

    Google Scholar 

  • Antón S, Browne IWA (2005) The recognition of blazars and the blazar spectral sequence. Mon Not R Astron Soc 356: 225–231

    ADS  Google Scholar 

  • Antonucci R, Miller J (1985) Spectropolarimetry and the nature of NGC. Astrophys J 297: 621–632

    ADS  Google Scholar 

  • Arnaboldi M, Neeser MJ, Parker LC et al (2007) ESO public surveys with the VST and VISTA. The Messenger 127: 28

    ADS  Google Scholar 

  • Auriemma C, Perola GC, Ekers RD et al (1977) A determination of the local radio luminosity function of elliptical galaxies. Astron Astrophys 57: 41

    ADS  Google Scholar 

  • Austermann JE, Dunlop JS, Perera TA et al (2009) AzTEC half square degree survey of the SHADES fields—I. Maps, catalogues, and source counts. ArXiv e-prints 0907.1093

  • Avni Y, Bahcall JN (1980) On the simultaneous analysis of several complete samples: the V/Vmax and Ve/Va variables, with applications to quasars. Astrophys J 235: 694–716

    ADS  Google Scholar 

  • Baganoff FK, Maeda Y, Morris M et al (2003) Chandra X-ray spectroscopic imaging of Sagittarius A* and the central parsec of the galaxy. Astrophys J 591: 891–915

    ADS  Google Scholar 

  • Barger AJ, Cowie LL, Mushotzky RF et al (2005) The cosmic evolution of hard X-ray-selected active galactic nuclei. Astron J 129: 578–609

    ADS  Google Scholar 

  • Barthel P (1989) Quasars and radio galaxies may BE two of a kind. Sci Am 260: 20

    ADS  Google Scholar 

  • Becker RH, White RL, Helfand DJ (1995) The FIRST survey: faint images of the radio sky at twenty centimeters. Astrophys J 450: 559

    ADS  Google Scholar 

  • Begelman MC (1996) Baby Cygnus A’s. Carilli CL, Harris DE (eds) Cygnus A—study of a radio galaxy. Cambridge University Press, Cambridge, pp 209–214

  • Begelman MC (1999) Young radio galaxies and their environments. In: Röttgering HJA, Best PN, Lehnert MD (eds) The most distant radio galaxies. pp 173

  • Begelman MC, Blandford RD, Rees MJ (1984) Theory of extragalactic radio sources. Rev Modern Phys 56: 255–351

    ADS  Google Scholar 

  • Benn CR, Rowan-Robinson M, McMahon RG, Broadhurst TJ, Lawrence A (1993) Spectroscopy of faint radio sources: the nature of the sub-mJy radio-source population. Mon Not R Astron Soc 263: 98–122

    ADS  Google Scholar 

  • Bennett AS (1962) The revised 3C catalogue of radio sources. Mon Not R Astron Soc 68: 163

    ADS  Google Scholar 

  • Bennett CL, Halpern M, Hinshaw G et al (2003) First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys J 148(Suppl): 1–27

    ADS  Google Scholar 

  • Benson BA, ChurchSE Ade PAR et al (2004) Measurements of Sunyaev–Zel’dovich effect scaling relations for clusters of galaxies. Astrophys J 617: 829–846

    ADS  Google Scholar 

  • Best PN, Kauffmann G, Heckman TM, Ivezić Ž (2005) A sample of radio-loud active galactic nuclei in the sloan digital sky survey. Mon Not R Astron Soc 362: 9–24

    ADS  Google Scholar 

  • Best PN, Kaiser CR, Heckman TM, Kauffmann G (2006) AGN-controlled cooling in elliptical galaxies. Mon Not R Astron Soc 368: L67–L71

    ADS  Google Scholar 

  • Bird J, Martini P, Kaiser C (2008) The lifetime of FR II sources in groups and clusters: implications for radio-mode feedback. Astrophys J 676: 147–162

    ADS  Google Scholar 

  • Birkinshaw M (1999) The Sunyaev–Zel’dovich effect. Phys Rep 310: 97–195

    ADS  Google Scholar 

  • Blain AW, Longair MS (1993) Submillimetre cosmology. Mon Not R Astron Soc 264: 509

    ADS  Google Scholar 

  • Blain AW, Longair MS (1996) Observing strategies for blank-field surveys in the submillimetre waveband. Mon Not R Astron Soc 279: 847–858

    ADS  Google Scholar 

  • Blake C, Wall J (2002a) Measurement of the angular correlation function of radio galaxies from the NRAO VLA sky survey. Mon Not R Astron Soc 329: L37–L41

    ADS  Google Scholar 

  • Blake C, Wall J (2002b) Measurement of the angular correlation function of radio galaxies from the NRAO VLA Sky Survey. Mon Not R Astron Soc 337: 993–1003

    ADS  Google Scholar 

  • Blake C, Ferreira PG, Borrill J (2004a) The angular power spectrum of NVSS radio galaxies. Mon Not R Astron Soc 351: 923–934

    ADS  Google Scholar 

  • Blake C, Mauch T, Sadler EM (2004b) Angular clustering in the Sydney University Molonglo sky survey. Mon Not R Astron Soc 347: 787–794

    ADS  Google Scholar 

  • Blandford R (1993) Black holes, accretion disks, and relativistic jets in active galactic nuclei. In: Akerlof CW, Srednicki MA (eds) Texas/PASCOS ’92: relativistic astrophysics and particle cosmology. New York Academy of Sciences Annals, vol 688. Wiley, New York, p 311

    Google Scholar 

  • Blandford R, Rees M (1974) Pittsburgh conference on BL Lac objects. MNRAS 169: 395

    ADS  Google Scholar 

  • Blandford RD, Begelman MC (1999) On the fate of gas accreting at a low rate on to a black hole. Mon Not R Astron Soc 303: L1–L5

    ADS  Google Scholar 

  • Blandford RD, Begelman MC (2004) Two-dimensional adiabatic flows on to a black hole—I. Fluid accretion. Mon Not R Astron Soc 349: 68–86

    ADS  Google Scholar 

  • Bloom SD, Marscher AP (1993) Examining the synchrotron self-Compton model for blazars. In: Friedlander M, Gehrels N, Macomb DJ (eds) Compton Gamma-ray observatory. American Institute of Physics Conference Series, vol 280. American Institute of Physics, New York, pp 578–582

    Google Scholar 

  • Blundell KM, Rawlings S, Willott CJ (1999) The nature and evolution of classical double radio sources from complete samples. Astron J 117: 677–706

    ADS  Google Scholar 

  • Bolton JG, Stanley GJ, Slee OB (1949) Positions of three discrete sources of Galactic radio frequency radiation. Nature 164: 101

    ADS  Google Scholar 

  • Bolton RC, Cotter G, Pooley GG et al (2004) The radio source population at high frequency: follow-up of the 15-GHz 9C survey. Mon Not R Astron Soc 354: 485–521

    ADS  Google Scholar 

  • Bonamente M, Joy MK, LaRoque SJ et al (2006) Determination of the cosmic distance scale from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys J 647: 25–54

    ADS  Google Scholar 

  • Bonamente M, Joy M, LaRoque SJ et al (2008) Scaling relations from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys J 675: 106–114

    ADS  Google Scholar 

  • Bondi H (1952) On spherically symmetrical accretion. Mon Not R Astron Soc 112: 195

    MathSciNet  ADS  Google Scholar 

  • Bondi H, Gold T (1948) The steady-state theory of the expanding universe. Mon Not R Astron Soc 108: 252

    MATH  ADS  Google Scholar 

  • Bondi M, Ciliegi P, Zamorani G et al (2003) The VLA-VIRMOS deep field. I. Radio observations probing the mu Jy source population. Astron Astrophys 403: 857–867

    ADS  Google Scholar 

  • Bondi M, Ciliegi P, Venturi T et al (2007) The VVDS-VLA deep field. III. GMRT observations at 610 MHz and the radio spectral index properties of the sub-mJy population. Astron Astrophys 463: 519

    ADS  Google Scholar 

  • Bondi M, Ciliegi P, Schinnerer E et al (2008) The VLA-COSMOS survey. III. Further catalog analysis and the radio source counts. Astrophys J 681: 1129

    ADS  Google Scholar 

  • Boughn S, Crittenden R (2004) A correlation between the cosmic microwave background and large-scale structure in the Universe. Nature 427: 45–47

    ADS  Google Scholar 

  • Boughn SP, Crittenden RG (2005) A detection of the integrated Sachs Wolfe effect. New Astron Rev 49: 75–78

    ADS  Google Scholar 

  • Bower RG, Benson AJ, Malbon R et al (2006) Breaking the hierarchy of galaxy formation. Mon Not R Astron Soc 370: 645–655

    ADS  Google Scholar 

  • Bressan A, Silva L, Granato GL (2002) Far infrared and radio emission in dusty starburst galaxies. Astron Astrophys 392: 377–391

    ADS  Google Scholar 

  • Bridle AH (1967) The spectrum of the radio background between 13 and 404 MHz. Mon Not R Astron Soc 136: 219

    ADS  Google Scholar 

  • Bridle AH, Davis MM, Fomalont EB, Lequeux J (1972) Flux densities, positions, and structures for a complete sample of intense radio sources at 1400 MHz. Astron J 77: 405–443

    ADS  Google Scholar 

  • Brookes MH, Best PN, Peacock JA, Röttgering HJA, Dunlop JS (2008) A combined EIS-NVSS survey of radio sources (CENSORS)—III. Spectroscopic observations. Mon Not R Astron Soc 385: 1297–1326

    ADS  Google Scholar 

  • Brown JC, Haverkorn M, Gaensler BM et al (2007) Rotation measures of extragalactic sources behind the southern galactic plane: new insights into the large-scale magnetic field of the inner milky way. Astrophys J 663: 258–266

    ADS  Google Scholar 

  • Burbidge GR (1959) Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Astrophys J 129: 849

    ADS  Google Scholar 

  • Burke BF, Graham-Smith F (1997) An introduction to radio astronomy. Cambridge University Press, Cambridge

    Google Scholar 

  • Caccianiga A, Marchã MJM (2004) The CLASS blazar survey: testing the blazar sequence. Mon Not R Astron Soc 348: 937–954

    ADS  Google Scholar 

  • Cara M, Lister ML (2008) The CLASS blazar survey: testing the blazar sequence. Astrophys J 674: 111–121

    ADS  Google Scholar 

  • Carilli CL, Rawlings S (2004) Science with the square kilometre array. New Astron Rev 48: 1

    Google Scholar 

  • Carlstrom JE, Holder GP, Reese ED (2002) Cosmology with the Sunyaev–Zel’dovich effect. Annu Rev Astron Astrophys 40: 643–680

    ADS  Google Scholar 

  • Carlstrom JE, Ade PAR, Aird KA et al (2009) The 10 meter south pole telescope. ArXiv e-prints 0907.4445

  • Cavaliere A, Giallongo E, Vagnetti F (1985) From local active galactic nuclei to early quasars. Astrophys J 296: 402–415

    ADS  Google Scholar 

  • Chamballu A, Bartlett JG, Melin J, Arnaud M (2008) An SZ/X-ray galaxy cluster model and the X-ray follow-up of the Planck clusters. ArXiv e-prints 0805.4361

  • Chatterjee S, Kosowsky A (2007) The Sunyaev–Zel’dovich Effect from Quasar Feedback. Astrophys J Lett 661: L113–L116

    ADS  Google Scholar 

  • Chatterjee S, di Matteo T, Kosowsky A, Pelupessy I (2008) Simulations of the Sunyaev–Zel’dovich effect from quasars. Mon Not R Astron Soc 390: 535–544

    ADS  Google Scholar 

  • Choloniewski J (1987) On Lynden–Bell’s method for the determination of the luminosity function. Mon Not R Astron Soc 226: 273–280

    ADS  Google Scholar 

  • Ciaramella A, Bongardo C, Aller HD et al (2004) A multifrequency analysis of radio variability of blazars. Astron Astrophys 419: 485–500

    ADS  Google Scholar 

  • Ciardi B, Loeb A (2000) Expected number and flux distribution of gamma-ray burst afterglows with high redshifts. Astrophys J 540: 687–696

    ADS  Google Scholar 

  • Ciliegi P, Zamorani G, Hasinger G et al (2003) A deep VLA survey at 6 cm in the Lockman Hole. Astron Astrophys 398: 901–918

    ADS  Google Scholar 

  • Cirasuolo M, Magliocchetti M, Celotti A (2005) Faint radio-loud quasars: clues to their evolution. Mon Not R Astron Soc 357: 1267–1280

    ADS  Google Scholar 

  • Cirasuolo M, Magliocchetti M, Gentile G et al (2006) On the radio properties of the highest redshift quasars. Mon Not R Astron Soc 371: 695–702

    ADS  Google Scholar 

  • Clark TA, Brown LW, Alexander JK (1970) Spectrum of the extra-galactic background radiation at low radio frequencies. Nature 228: 847–849

    ADS  Google Scholar 

  • Cleary KA, Taylor AC, Waldram E et al (2005) Source subtraction for the extended very small array and 33-GHz source count estimates. Mon Not R Astron Soc 360: 340–353

    ADS  Google Scholar 

  • Clemens MS, Vega O, Bressan A et al (2008) Modeling the spectral energy distribution of ULIRGs. I. The radio spectra. Astron Astrophys 477: 95–104

    ADS  Google Scholar 

  • Clewley L, Jarvis MJ (2004) The cosmic evolution of low-luminosity radio sources from the Sloan digital sky survey data release 1. Mon Not R Astron Soc 352: 909–914

    ADS  Google Scholar 

  • Cohen AS, Lane WM, Cotton WD et al (2007) The VLA low-frequency sky survey. Astron J 134: 1245–1262

    ADS  Google Scholar 

  • Cohen MH, Cannon W, Purcell GH et al (1971) The small-scale structure of radio galaxies and quasi-stellar sources at 3.8 centimeters. Astrophys J 170: 207

    ADS  Google Scholar 

  • Colafrancesco S, Mazzotta P, Rephaeli Y, Vittorio N (1997) Intracluster comptonization of the cosmic microwave background: mean spectral distortion and cluster number counts. Astrophys J 479: 1

    ADS  Google Scholar 

  • Condon JJ (1984a) Cosmological evolution of radio sources. Astrophys J 287: 461–474

    ADS  Google Scholar 

  • Condon JJ (1984b) Cosmological evolution of radio sources found at 1.4 GHz. Astrophys J 284: 44–53

    ADS  Google Scholar 

  • Condon JJ (1989) The 1.4 gigahertz luminosity function and its evolution. Astrophys J 338: 13–23

    ADS  Google Scholar 

  • Condon JJ (1992) Radio emission from normal galaxies. ARA&A 30: 575–611

    ADS  Google Scholar 

  • Condon JJ (2007) Deep radio surveys. In: Afonso J, Ferguson HC, Mobasher B, Norris R (eds) Sky Surveys. Protostars to Protogalaxies. Astronomical Society of the Pacific Conference Series, vol 380. Deepest Astronomical Surveys. Astronomical Society of the Pacific, San Francisco, p 189

  • Condon JJ, Mitchell KJ (1984) A deeper VLA survey of the alpha = 08h52m15s, delta = +17 deg 16 arcmin field. Astron J 89: 610–617

    ADS  Google Scholar 

  • Condon JJ, Anderson ML, Helou G (1991) Correlations between the far-infrared, radio, and blue luminosities of spiral galaxies. Astrophys J 376: 95–103

    ADS  Google Scholar 

  • Condon JJ, Cotton WD, Broderick JJ (2002) Radio Sources and Star Formation in the Local Universe. Astron J 124: 675–689

    ADS  Google Scholar 

  • Condon JJ, Cotton WD, Greisen EW et al (1998) The NRAO VLA sky survey. Astron J 115: 1693–1716

    ADS  Google Scholar 

  • Cook M, Lapi A, Granato GL (2009) Two-phase galaxy formation. Mon Not R Astron Soc 397: 534–547

    ADS  Google Scholar 

  • Coppin K, Chapin EL, Mortier AMJ et al (2006) The SCUBA half-degree extragalactic survey—II. Submillimetre maps, catalogue and number counts. Mon Not R Astron Soc 372: 1621–1652

    ADS  Google Scholar 

  • Cotton WD, Wittels JJ, Shapiro II et al (1980) The very flat radio spectrum of 0735 plus 178: a cosmic conspiracy. Astrophys J Lett 238: L123–L128

    ADS  Google Scholar 

  • Cowie LL, Songaila A, Hu EM, Cohen JG (1996) New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii deep fields. Astron J 112: 839

    ADS  Google Scholar 

  • Cress CM, Kamionkowski M (1998) Interpreting the clustering of radio sources. Mon Not R Astron Soc 297: 486–492

    ADS  Google Scholar 

  • Crittenden RG, Turok N (1996) Looking for a cosmological constant with the Rees–Sciama effect. Phys Rev Lett 76: 575–578

    ADS  Google Scholar 

  • Croom S, Boyle B, Shanks T et al (2004) AGN physics from QSO clustering. In: Richards GT, Hall PB (eds) AGN physics with the sloan digital sky survey. Astronomical Society of the Pacific Conference Series, vol 311. Astronomical Society of the Pacific, Princeton, p 457

    Google Scholar 

  • Croton DJ, Springel V, White SDM et al (2006) The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon Not R Astron Soc 365: 11–28

    ADS  Google Scholar 

  • Cruz MJ, Jarvis MJ, Rawlings S, Blundell KM (2007) The 6C** sample of steep-spectrum radio sources - II. Redshift distribution and the space density of high-redshift radio galaxies. Mon Not R Astron Soc 375: 1349–1363

    ADS  Google Scholar 

  • Dallacasa D, Stanghellini C, Centonza M, Fanti R (2000) High frequency peakers. I. The bright sample. Astron Astrophys 363: 887–900

    ADS  Google Scholar 

  • Dallacasa D, Stanghellini C, Centonza M, Furnari G (2002) High frequency peakers. New Astron Rev 46: 299–302

    ADS  Google Scholar 

  • Danese L, de Zotti G (1984) Differential information on the evolution of extragalactic sources from spectral index distributions. Astron Astrophys 131: L1–L4

    ADS  Google Scholar 

  • Danese L, Franceschini A, de Zotti G (1985) A comparative study of cosmological evolution in the radio, optical and X-ray bands. Astron Astrophys 143: 277–291

    ADS  Google Scholar 

  • Danese L, Franceschini A, Toffolatti L, de Zotti G (1987) Interpretation of deep counts of radio sources. Astrophys J Lett 318: L15–L20

    ADS  Google Scholar 

  • de Bruyn G, Miley G, Rengelink R et al (2000) The Westerbork Northern Sky Survey (Leiden, 1998). VizieR Online Data Catalog 8: 62

    Google Scholar 

  • de Luca A, Desert FX, Puget JL (1995) Source counts for the thermal and kinetic Sunyaev–Zel’dovich effects in clusters of galaxies. Astron Astrophys 300: 335

    ADS  Google Scholar 

  • De Lucia G, Blaizot J (2007) The hierarchical formation of the brightest cluster galaxies. Mon Not R Astron Soc 375: 2–14

    ADS  Google Scholar 

  • De Zotti G, Toffolatti L, Argüeso F et al (1999) The planck surveyor mission: astrophysical prospects. In: Maiani L, Melchiorri F, Vittorio N (eds) 3K cosmology. American Institute of Physics Conference Series, vol 476. American Institute of Physics, Woodbury, p 204

    Google Scholar 

  • De Zotti G, Granato GL, Silva L, Maino D, Danese L (2000) An evolutionary model for GHz peaked spectrum sources. Predictions for high frequency surveys. Astron Astrophys 354: 467–472

    ADS  Google Scholar 

  • De Zotti G, Burigana C, Cavaliere A et al (2004) The Sunyaev–Zeldovich effect as a probe of the galaxy formation process. In: Bertin G, Farina D, Pozzoli R (eds) Plasmas in the laboratory and in the universe: new insights and new challenges. American Institute of Physics Conference Series, vol 703. American Institute of Physics, Melville, pp 375–384

    Google Scholar 

  • De Zotti G, Ricci R, Mesa D et al (2005) Predictions for high-frequency radio surveys of extragalactic sources. Astron Astrophys 431: 893–903

    ADS  Google Scholar 

  • Dekel A, Birnboim Y (2006) Galaxy bimodality due to cold flows and shock heating. Mon Not R Astron Soc 368: 2–20

    ADS  Google Scholar 

  • de Matteo T, Fabian AC, Rees MJ, Carilli CL, Ivison RJ (1999) Strong observational constraints on advection-dominated accretion in the cores of elliptical galaxies. Mon Not R Astron Soc 305: 492–504

    ADS  Google Scholar 

  • Di Matteo T, Carilli CL, Fabian AC (2001) Limits on the accretion rates onto massive black holes in nearby galaxies. Astrophys J 547: 731–739

    ADS  Google Scholar 

  • Dicke RH, Peebles PJE, Roll PG, Wilkinson DT (1965) Cosmic black-body radiation. Astrophys J 142: 414–419

    ADS  Google Scholar 

  • Dobbs M, Halverson NW, Ade PAR et al (2006) APEX-SZ first light and instrument status. New Astron Rev 50: 960–968

    ADS  Google Scholar 

  • Doroshkevich AG, Longair MS, Zeldovich YB (1970) The evolution of radio sources at large redshifts. Mon Not R Astron Soc 147: 139–148

    ADS  Google Scholar 

  • Drinkwater MJ, Webster RL, Francis PJ et al (1997) The Parkes half-jansky flat-spectrum sample. Mon Not R Astron Soc 284: 85–125

    ADS  Google Scholar 

  • Dunlop JS, Peacock JA (1990) The redshift cut-off in the luminosity function of radio galaxies and quasars. Mon Not R Astro Soc 247: 19

    ADS  Google Scholar 

  • Dunlop JS, McLure RJ, Kukula MJ et al (2003) Quasars, their host galaxies and their central black holes. Mon Not R Astron Soc 340: 1095–1135

    ADS  Google Scholar 

  • Eales S (1993) Direct construction of the galaxy luminosity function as a function of redshift. Astrophys J 404: 51–62

    ADS  Google Scholar 

  • Edge DO, Shakeshaft JR, McAdam WB, Baldwin JE, Archer S (1959) A survey of radio sources at a frequency of 159 Mc/s. Mon Not R Astron Soc 68: 37–60

    ADS  Google Scholar 

  • Edge AC, Pooley G, Jones M, Grainge K, Saunders R (1998) GPS sources with high peak frequencies. In: Zensus JA, Taylor GB, Wrobel JM (eds) IAU Colloq. 164: radio emission from galactic and extragalactic compact sources. Astronomical Society of the Pacific Conference Series, vol 144. Astronomical Society of the Pacific, San Francisco, p 187

    Google Scholar 

  • Fabian AC, Rees MJ (1995) The accretion luminosity of a massive black hole in an elliptical galaxy. Mon Not R Astron Soc 277: L55–L58

    ADS  Google Scholar 

  • Fan X, Hennawi JF, Richards GT et al (2004) A survey of z ≥  5.7 quasars in the sloan digital sky survey. III. Discovery of five additional quasars. Astron J 128: 515–522

    ADS  Google Scholar 

  • Fanaroff BL, Riley JM (1974) The morphology of extragalactic radio sources of high and low luminosity. Mon Not R Astron Soc 167: 31P–36P

    ADS  Google Scholar 

  • Fanti C, Fanti R, Dallacasa D et al (1995) Are compact steep-spectrum sources young?. Astron Astrophys 302: 317

    ADS  Google Scholar 

  • Felten JE (1976) On Schmidt’s Vm estimator and other estimators of luminosity functions. Astrophys J 207: 700–709

    ADS  Google Scholar 

  • Feretti L (2008) Radio emission in clusters and connection to X-ray emission. Memorie della Societa Astronomica Italiana 79: 176

    ADS  Google Scholar 

  • Ferrarese L, Ford H (2005) Supermassive black holes in galactic nuclei: past, present and future research. Space Sci Rev 116: 523–624

    ADS  Google Scholar 

  • Fixsen DJ, Kogut A, Levin S et al (2009) ARCADE 2 measurement of the extra-galactic sky temperature at 3–90 GHz. ArXiv e-prints 0901.0555

  • Fomalont EB, Kellermann KI, Wall JV, Weistrop D (1984) A deep 6-centimeter radio source survey. Science 225: 23–28

    ADS  Google Scholar 

  • Fomalont EB, Kellermann KI, Cowie LL et al (2006) The radio/optical catalog of the SSA 13 field. Astrophys J 167(Suppl): 103–160

    Google Scholar 

  • Fossati G, Maraschi L, Celotti A, Comastri A, Ghisellini G (1998) A unifying view of the spectral energy distributions of blazars. Mon Not R Astron Soc 299: 433–448

    ADS  Google Scholar 

  • Friedman RB, QUaD Collaboration (2009) Small angular scale CMB temperature anisotropy observations from the QUaD telescope. In American Astronomical Society Meeting Abstracts, vol 213. American Astronomical Society, p 340.06

  • Garrett MA (2002) The FIR/radio correlation of high redshift galaxies in the region of the HDF-N. Astron Astrophys 384: L19–L22

    ADS  Google Scholar 

  • Gavazzi G, Cocito A, Vettolani G (1986) On the dependence of far-infrared and radio continuum luminosities on Hubble type in spiral galaxies. Astrophys J Lett 305: L15–L18

    ADS  Google Scholar 

  • Gear WK, Stevens JA, Hughes DH et al (1994) A comparison of the radio/submillimetre spectra of Bl-lacertae objects and flat spectrum radio quasars. Mon Not R Astron Soc 267: 167

    ADS  Google Scholar 

  • Geisbüsch J, Kneissl R, Hobson M (2005) Sunyaev-Zel’dovich cluster survey simulations for Planck. Mon Not R Astron Soc 360: 41–59

    ADS  Google Scholar 

  • Gendre MA, Wall JV (2008) The combined NVSS-FIRST galaxies (CoNFIG) sample—I. Sample definition, classification and evolution. Mon Not R Astro Soc 390: 819–828

    ADS  Google Scholar 

  • Gervasi M, Tartari A, Zannoni M, Boella G, Sironi G (2008) The contribution of the unresolved extragalactic radio sources to the brightness temperature of the sky. Astrophys J 682: 223–230

    ADS  Google Scholar 

  • Ghisellini G, Celotti A, Fossati G, Maraschi L, Comastri A (1998) A theoretical unifying scheme for gamma-ray bright blazars. Mon Not R Astron Soc 301: 451–468

    ADS  Google Scholar 

  • Giannantonio T, Scranton R, Crittenden RG et al (2008) Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications. Phys Rev D 77: 123520

    ADS  Google Scholar 

  • Ginzburg VL (1951) Cosmic rays as the source of galactic radio emission. Dokl Akad Nauk SSSR 76: 377

    Google Scholar 

  • Giommi P, Massaro E, Chiappetti L et al (1999) Synchrotron and inverse Compton variability in the BL Lacertae object S5 0716+714. Astron Astrophys 351: 59–64

    ADS  Google Scholar 

  • Gower JFR (1966) The source counts from the 4C survey. Mon Not R Astro Soc 133: 151

    ADS  Google Scholar 

  • Granato GL, De Zotti G, Silva L, Bressan A, Danese L (2004) A physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys J 600: 580–594

    ADS  Google Scholar 

  • Gregory PC, Scott WK, Douglas K, Condon JJ (1996) The GB6 catalog of radio sources. Astrophys J 103(Suppl): 427

    ADS  Google Scholar 

  • Griffith MR, Wright AE (1993) The Parkes-MIT-NRAO (PMN) surveys. I: the 4850 MHz surveys and data reduction. Astron J 105: 1666–1679

    ADS  Google Scholar 

  • Grueff G, Vigotti M (1977) On the cosmological evolution of extragalactic radio sources. Astron Astrophys 54: 475–484

    ADS  Google Scholar 

  • Gruppioni C, Mignoli M, Zamorani G (1999) Optical identifications and spectroscopy of a faint radio source sample: the nature of the sub-mJy population. Mon Not R Astro Soc 304: 199–217

    ADS  Google Scholar 

  • Gruppioni C, Pozzi F, Zamorani G et al (2003) The radio-mid-infrared correlation and the contribution of 15-μm galaxies to the 1.4-GHz source counts. Mon Not R Astro Soc 341: L1–L6

    ADS  Google Scholar 

  • Guo Q, Whit SDM (2008) Galaxy growth in the concordance ΛCDM cosmology. Mon Not R Astron Soc 384: 2–10

    ADS  Google Scholar 

  • Hales SEG, Baldwin JE, Warner PJ (1993) The 6C survey of radio sources. VI—the continuous zone delta between 30 deg and 51 deg, alpha between 0 H and 09 H 05 M and alpha between 22 H 35 M and 24 H. Mon Not R Astron Soc 263: 25–30

    ADS  Google Scholar 

  • Hales SEG, Waldram EM, Rees N, Warner PJ (1995) A revised machine-readable source list for the Rees 38-MHz survey. Mon Not R Astron Soc 274: 447–451

    ADS  Google Scholar 

  • Hales SEG, Riley JM, Waldram EM, Warner PJ, Baldwin JE (2007) A final non-redundant catalogue for the 7C 151-MHz survey. Mon Not R Astron Soc 382: 1639–1642

    ADS  Google Scholar 

  • Halverson NW, Lanting T, Ade PAR et al (2009) Sunyaev–Zel’Dovich effect observations of the bullet cluster (1E 0657–56) with APEX-SZ. Astrophys J 701: 42–51

    ADS  Google Scholar 

  • Hasinger G, Miyaji T, Schmidt M (2005) Luminosity-dependent evolution of soft X-ray selected AGN. New Chandra and XMM-Newton surveys. Astron Astrophys 441: 417–434

    ADS  Google Scholar 

  • Haslam CGT, Salter CJ, Stoffel H, Wilson WE (1982) A 408 MHz all-sky continuum survey. II: the atlas of contour maps. Astron Astrophys 47(Suppl): 1

    ADS  Google Scholar 

  • Hazard C, Mackey MB, Shimmins AJ (1963) Investigation of the radio source 3C 273 by the method of lunar occultations. Nature 197: 1037–1039

    ADS  Google Scholar 

  • Helou G, Soifer BT, Rowan-Robinson M (1985) Thermal infrared and nonthermal radio: remarkable correlation in disks of galaxies. Astrophys J Lett 298: L7–L11

    ADS  Google Scholar 

  • Hinshaw G, Naeye R (2008) Decoding the oldest light in the universe. Sky Telesc 115: 050000

    Google Scholar 

  • Hinshaw G, Nolta MR, Bennett CL et al (2007) Three-year Wilkinson microwave anisotropy probe (WMAP) observations: temperature analysis. Astrophys J 170(Suppl): 288–334

    Google Scholar 

  • Ho S, Hirata C, Padmanabhan N, Seljak U, Bahcall N (2008) Correlation of CMB with large-scale structure. I. Integrated Sachs–Wolfe tomography and cosmological implications. Phys Rev D 78: 043519

    ADS  Google Scholar 

  • Hodapp KW, Siegmund WA, Kaiser N, et al (2004) Optical design of the Pan-STARRS telescopes. In: Oschmann JM Jr (eds) Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) conference, vol 5489. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp 667–678

  • Holdaway MA, Rupen MP, Knapp GR, West S, Burton WB (1994) Arcminute resolution VLA imaging of high latitude HI. In: Bulletin of the American Astronomical Society, vol 26. American Astronomical Society, p 1328

  • Hook IM, Shaver PA, McMahon RG (1998) The evolution of radio-loud quasars at high redshift. In: D’Odorico S, Fontana A, Giallongo E (eds) The young universe: galaxy formation and evolution at intermediate and high redshift. Astronomical Society of the Pacific Conference Series, vol 146. Astronomical Society of the Pacific, p 17

  • Hopkins AM, Mobasher B, Cram L, Rowan-Robinson M (1998) The PHOENIX deep survey: 1.4-GHz source counts. Mon Not R Astro Soc 296: 839–846

    ADS  Google Scholar 

  • Hopkins A, Windhorst R, Cram L, Ekers R (2000) What will the next generation radio telescope detect at 1.4 GHz?. Exp Astron 10: 419–437

    ADS  Google Scholar 

  • Hopkins AM, Afonso J, Chan B et al (2003) The phoenix deep survey: the 1.4 GHz Microjansky catalog. Astron J 125: 465–477

    ADS  Google Scholar 

  • Hovatta T, Lehto HJ, Tornikoski M (2008) Wavelet analysis of a large sample of AGN at high radio frequencies. Astron Astrophys 488: 897–903

    ADS  Google Scholar 

  • Hoyle F (1948) A new model for the expanding universe. Mon Not R Astro Soc 108: 372

    MATH  ADS  Google Scholar 

  • Hoyle F, Fowler WA (1963) On the nature of strong radio sources. Mon Not R Astro Soc 125: 169

    ADS  Google Scholar 

  • Huynh MT, Jackson CA, Norris RP, Prandoni I (2005) Radio observations of the hubble deep field-south region. II. The 1.4 GHz catalog and source counts. Astron J 130: 1373–1388

    ADS  Google Scholar 

  • Huynh MT, Jackson CA, Norris RP, Fernandez-Soto A (2008) Radio observations of the hubble deep field-south region. IV. Optical properties of the faint radio population. Astron J 135: 2470–2495

    ADS  Google Scholar 

  • Impey CD, Neugebauer G (1988) Energy distributions of blazars. Astron J 95: 307–351

    ADS  Google Scholar 

  • Ivison RJ, Chapman SC, Faber SM et al (2007) AEGIS20: a radio survey of the extended groth strip. Astrophys J Lett 660: L77–L80

    ADS  Google Scholar 

  • Jackson CA, Wall JV (1999) Extragalactic radio-source evolution under the dual-population unification scheme. Mon Not R Astro Soc 304: 160–174

    ADS  Google Scholar 

  • Jackson CA, Wall JV (2001) Extragalactic radio source evolution and unification: clues to the demographics of blazars. In: Padovani P, Urry CM (eds) Blazar demographics and physics. Astronomical Society of the Pacific Conference Series, vol 227. Astronomical Society of the Pacific, p 242

  • Jarvis MJ, Rawlings S (2000) On the redshift cut-off for flat-spectrum radio sources. Mon Not R Astro Soc 319: 121–136

    ADS  Google Scholar 

  • Jarvis MJ, Rawlings S, Willott CJ et al (2001) On the redshift cut-off for steep-spectrum radio sources. Mon Not R Astro Soc 327: 907–917

    ADS  Google Scholar 

  • Jarvis MJ, Teimourian H, Simpson C et al (2009) The discovery of a typical radio galaxy at z = 4.88. ArXiv e-prints 0907.1447

  • Jennison RC, Das Gupta MK (1953) Fine structure of the extra-terrestrial radio source Cygnus 1. Nature 172: 996

    ADS  Google Scholar 

  • Johnston S, Taylor R, Bailes M et al (2008) Science with ASKAP. The Australian square-kilometre-array pathfinder. Exp Astron 22: 151–273

    ADS  Google Scholar 

  • Jones ME, Edge AC, Grainge K et al (2005) H 0 from an orientation-unbiased sample of Sunyaev–Zel’dovich and X-ray clusters. Mon Not R Astro Soc 357: 518–526

    ADS  Google Scholar 

  • Kapahi VK (1981) Westerbork observations of radio sources in the 5 GHz ‘S4’ survey. Astron Astrophys 43(Suppl): 381–393

    ADS  Google Scholar 

  • Kellermann KI (1964) The spectra of non-thermal radio sources. Astrophys J 140: 969

    ADS  Google Scholar 

  • Kellermann KI (1966) On the interpretation of radio-source spectra and the evolution of radio galaxies and quasi-stellar sources. Astrophys J 146: 621

    ADS  Google Scholar 

  • Kellermann KI, Pauliny-Toth IIK (1969) The spectra of opaque radio sources. Astrophys J Lett 155: L71

    ADS  Google Scholar 

  • Kellermann KI, Wall JV (1987) Radio source counts and their interpretation. In: Hewitt A, Burbidge G, Fang LZ (eds) Observational cosmology. IAU Symposium, vol 124. Reidel, Dordrecht, pp 545–562

    Google Scholar 

  • Kellermann KI, Pauliny-Toth IIK, Williams PJS (1969) The spectra of radio sources in the revised 3c catalogue. Astrophys J 157: 1

    ADS  Google Scholar 

  • King AJ, Rowan-Robinson M (2004) Linking radio to infrared: a radio source count model. Mon Not R Astro Soc 349: 1353–1360

    ADS  Google Scholar 

  • Klamer IJ, Ekers RD, Bryant JJ et al (2006) A search for distant radio galaxies from SUMSS and NVSS—III. Radio spectral energy distributions and the z-α correlation. Mon Not R Astro Soc 371: 852–866

    ADS  Google Scholar 

  • Kosowsky A (2006) The atacama cosmology telescope project: a progress report. New Astron Rev 50: 969–976

    ADS  Google Scholar 

  • Kovac JM, Leitch EM, Pryke C et al (2002) Detection of polarization in the cosmic microwave background using DASI. Nature 420: 772–787

    ADS  Google Scholar 

  • Krolik JH, Chen W (1991) Steep radio spectra in high-redshift radio galaxies. Astron J 102: 1659–1662

    ADS  Google Scholar 

  • Lacy M, Hill GJ, Kaiser ME, Rawlings S (1993) A complete sample of sources in the north ecliptic CAP selected at 38-MHZ—part 2: CCD observations and their implications. Mon Not R Astro Soc 263: 707

    ADS  Google Scholar 

  • Lagache G, Puget J-L, Dole H (2005) Dusty infrared galaxies: sources of the cosmic infrared background. Annu Rev Astron Astrophys 43: 727–768

    ADS  Google Scholar 

  • Laing RA, Peacock JA (1980) The relation between radio luminosity and spectrum for extended extragalactic radio sources. Mon Not R Astron Soc 190: 903–923

    ADS  Google Scholar 

  • Laing RA, Riley JM, Longair MS (1983) Bright radio sources at 178 MHz: flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon Not R Astro Soc 204: 151–187

    ADS  Google Scholar 

  • Lancaster K, Birkinshaw M, Gawroński MP et al (2007) Preliminary Sunyaev–Zel’dovich observations of galaxy clusters with OCRA-p. Mon Not R Astro Soc 378: 673–680

    ADS  Google Scholar 

  • Landt H, Perlman ES, Padovani P (2006) VLA observations of a new population of blazars. Astrophys J 637: 183–199

    ADS  Google Scholar 

  • Lapi A, Cavaliere A, De Zotti G (2003) Sunyaev–Zel’dovich effects from quasars in galaxies and groups. Astrophys J Lett 597: L93–L96

    ADS  Google Scholar 

  • Lapi A, Shankar F, Mao J et al (2006) Quasar luminosity functions from joint evolution of black holes and host galaxies. Astrophys J 650: 42–56

    ADS  Google Scholar 

  • Leahy JP, Muxlow TWB, Stephens PW (1989) 151-MHz and 1.5-GHz observations of bridges in powerful extragalactic radio sources. Mon Not R Astro Soc 239: 401–440

    ADS  Google Scholar 

  • Ledlow MJ, Owen FN (1996) 20 cm VLA survey of Abell clusters of galaxies. VI. Radio/optical luminosity functions. Astron J 112: 9

    ADS  Google Scholar 

  • Limber DN (1953) The analysis of counts of the extragalactic nebulae in terms of a fluctuating density field. Astrophys J 117: 134

    MathSciNet  ADS  Google Scholar 

  • Lister ML (2008) Parsec-scale jet-environment interactions in AGN. In: Rector TA, De Young DS (eds) Extragalactic jets: theory and observation from radio to gamma ray. Astronomical Society of the Pacific Conference Series, vol 386. Astronomical Society of the Pacific, p 240

  • Liu Y, Zhang SN (2007) The Lorentz factor distribution and luminosity function of relativistic jets in AGNs. Astrophys J 667: 724–730

    ADS  Google Scholar 

  • Lo KY, Chiueh TH, Martin RN et al (2001) AMiBA: array for microwave background anistropy. In: Wheeler JC, Martel H (eds) 20th Texas Symposium on relativistic astrophysics. American Institute of Physics Conference Series, vol 586, p 172

  • Longair MS (1966) On the interpretation of radio source counts. Mon Not R Astro Soc 133: 421

    ADS  Google Scholar 

  • Longair MS, Scheuer PAG (1970) The luminosity-volume test for quasi-stellar objects. Mon Not R Astro Soc 151: 45

    ADS  Google Scholar 

  • López-Caniego M, González-Nuevo J, Herranz D et al (2007) Nonblind catalog of extragalactic point sources from the Wilkinson microwave anisotropy probe (WMAP) first 3 year survey data. Astrophys J 170(Suppl): 108–125

    Google Scholar 

  • Lovell JEJ, Jauncey DL, Senkbeil C et al (2007) MASIV: the microarcsecond scintillation-induced variability survey. In: Haverkorn M, Goss WM (eds) SINS: small ionized and neutral structures in the diffuse interstellar medium. Astronomical Society of the Pacific Conference Series, vol 365. Astronomical Society of the Pacific, San Francisco, p 279

    Google Scholar 

  • Lynden-Bell D (1969) Nature 223: 690

    ADS  Google Scholar 

  • Lynden-Bell D (1971) A method of allowing for known observational selection in small samples applied to 3CR quasars. Mon Not R Astro Soc 155: 95

    ADS  Google Scholar 

  • Machalski J, Godlowski W (2000) 1.4 GHz luminosity function of galaxies in the Las Campanas redshift survey and its evolution. Astron Astrophys 360: 463–471

    ADS  Google Scholar 

  • Mack K-H, Klein U, O’Dea CP, Willis AG (1997) Multi-frequency radio continuum mapping of giant radio galaxies. Astron Astrophys Suppl 123: 423–444

    ADS  Google Scholar 

  • Magliocchetti M, Maddox SJ, Lahav O, Wall JV (1998) Variance and skewness in the FIRST survey. Mon Not R Astro Soc 300: 257–268

    ADS  Google Scholar 

  • Magliocchetti M, Maddox SJ, Lahav O, Wall JV (1999) Constraints on the clustering, biasing and redshift distribution of radio sources. Mon Not R Astron Soc 306: 943–953

    ADS  Google Scholar 

  • Magliocchetti M, Maddox SJ, Jackson CA et al (2002) The 2dF galaxy redshift survey: the population of nearby radio galaxies at the 1-mJy level. Mon Not R Astro Soc 333: 100–120

    ADS  Google Scholar 

  • Magliocchetti M, Maddox SJ, Hawkins E et al (2004) The 2dF galaxy redshift survey: clustering properties of radio galaxies. Mon Not R Astro Soc 350: 1485–1494

    ADS  Google Scholar 

  • Majumdar S, Nath BB, Chiba M (2001) Sunyaev–Zel’dovich distortion from early galactic winds. Mon Not R Astro Soc 324: 537–546

    ADS  Google Scholar 

  • Maraschi L, Ghisellini G, Celotti A (1992) A jet model for the gamma-ray emitting blazar 3C 279. Astrophys J Lett 397: L5–L9

    ADS  Google Scholar 

  • Mason BS, Pearson TJ, Readhead ACS et al (2003) The anisotropy of the microwave background to l = 3500: deep field observations with the cosmic background imager. Astrophys J 591: 540–555

    ADS  Google Scholar 

  • Mason BS, Weintraub LC, Sievers JL et al (2009) A 31 GHz survey of low-frequency selected radio sources. ArXiv e-prints 0901.4330

  • Massardi M, Ekers RD, Murphy T et al (2008a) The Australia telescope 20-GHz (AT20G) survey: the bright source sample. Mon Not R Astro Soc 384: 775–802

    ADS  Google Scholar 

  • Massardi M, Lapi A, de Zotti G, Ekers RD, Danese L (2008b) Observability of the virialization phase of spheroidal galaxies with radio arrays. Mon Not R Astro Soc 384: 701–710

    ADS  Google Scholar 

  • Massardi M, Bonaldi A, Negrello M, Ricciardi S, Raccanelli A, De Zotti G (2009a) A model for the cosmological evolution of low frequency radio sources. Mon Not R Astron Soc (submitted)

  • Massardi M, López-Caniego M, González-Nuevo J et al (2009b) Blind and non-blind source detection in WMAP 5-year maps. Mon Not R Astro Soc 392: 733–742

    ADS  Google Scholar 

  • Masson CR, Wall JV (1977) The cosmological evolution of flat-spectrum quasars. Mon Not R Astro Soc 180: 193–206

    ADS  Google Scholar 

  • Matarrese S, Coles P, Lucchin F, Moscardini L (1997) Redshift evolution of clustering. Mon Not R Astro Soc 286: 115–132

    ADS  Google Scholar 

  • Mather JC, Fixsen DJ, Shafer RA, Mosier C, Wilkinson DT (1999) Calibrator design for the COBE far-infrared absolute spectrophotometer (FIRAS). Astrophys J 512: 511–520

    ADS  Google Scholar 

  • Mauch T, Sadler EM (2007) Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN. Mon Not R Astro Soc 375: 931–950

    ADS  Google Scholar 

  • Mauch T, Murphy T, Buttery HJ et al (2003) SUMSS: a wide-field radio imaging survey of the southern sky—II. The source catalogue. Mon Not R Astro Soc 342: 1117–1130

    ADS  Google Scholar 

  • McEwen JD, Vielva P, Hobson MP, Martínez-González E, Lasenby AN (2007) Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets. Mon Not R Astro Soc 376: 1211–1226

    ADS  Google Scholar 

  • McEwen JD, Wiaux Y, Hobson MP, Vandergheynst P, Lasenby AN (2008) Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures. Mon Not R Astron Soc 384: 1289–1300

    ADS  Google Scholar 

  • McGreer ID, Becker RH, Helfand DJ, White RL (2006) Discovery of a z = 6.1 radio-loud quasar in the NOAO deep wide field survey. Astrophys J 652: 157–162

    ADS  Google Scholar 

  • McLure RJ, Willott CJ, Jarvis MJ et al (2004) A sample of radio galaxies spanning three decades in radio luminosity—I. The host galaxy properties and black hole masses. Mon Not R Astro Soc 351: 347–367

    ADS  Google Scholar 

  • Mesa D, Baccigalupi C, De Zotti G et al (2002) Polarization properties of extragalactic radio sources and their contribution to microwave polarization fluctuations. Astron Astrophys 396: 463–471

    ADS  Google Scholar 

  • Mészáros P (1999) Gamma-ray burst afterglows and their implications. Astron Astrophys 138(Suppl): 533–536

    Google Scholar 

  • Miley G, De Breuck C (2008) Distant radio galaxies and their environments. Astron Astrophys Rev 15: 67–144

    ADS  Google Scholar 

  • Mills BY, Slee OB, Hill ER (1958) A catalogue of radio sources between declinations +10° and −20°. Aust J Phys 11: 360

    ADS  Google Scholar 

  • Minkowski R (1960) A new distant cluster of galaxies. PASP 72: 354

    ADS  Google Scholar 

  • Mitchell KJ, Condon JJ (1985) A confusion-limited 1.49-GHz VLA survey centered on alpha = 13 H 00 M 37 s, delta = +30 deg 34 arcmin. Astron J 90: 1957–1966

    ADS  Google Scholar 

  • Moffet AT, Gubbay J, Robertson DS, Legg AJ (1972) High resolution observations of variable radio sources. In: Evans DS, Wills D, Wills BJ (eds) External galaxies and quasi-stellar objects. IAU Symposium, vol 44. Reidel, Dordrecht, p 228

    Google Scholar 

  • Moscardini L, Coles P, Lucchin F, Matarrese S (1998) Modelling galaxy clustering at high redshift. Mon Not R Astro Soc 299: 95–110

    ADS  Google Scholar 

  • Moss D, Seymour N, McHardy IM et al (2007) A deep giant metre-wave radio telescope 610-MHz survey of the 1H XMM-Newton/Chandra survey field. Mon Not R Astro Soc 378: 995–1006

    ADS  Google Scholar 

  • Muchovej S, Mroczkowski T, Carlstrom JE et al (2007) Observations of high-redshift X-ray selected clusters with the Sunyaev–Zel’dovich array. Astrophys J 663: 708

    ADS  Google Scholar 

  • Murphy T, Mauch T, Green A et al (2007) The second epoch Molonglo galactic plane survey: compact source catalogue. Mon Not R Astro Soc 382: 382–392

    ADS  Google Scholar 

  • Muxlow TWB, Richards AMS, Garrington ST et al (2005) High-resolution studies of radio sources in the hubble deep and flanking fields. Mon Not R Astro Soc 358: 1159–1194

    ADS  Google Scholar 

  • Natarajan P, Sigurdsson S (1999) Sunyaev–Zeldovich decrements with no clusters?. Mon Not R Astro Soc 302: 288–292

    ADS  Google Scholar 

  • Negrello M, Magliocchetti M, De Zotti G (2006) The large-scale clustering of radio sources. Mon Not R Astro Soc 368: 935–942

    ADS  Google Scholar 

  • Negrello M, Perrotta F, González-Nuevo J et al (2007) Astrophysical and cosmological information from large-scale submillimetre surveys of extragalactic sources. Mon Not R Astro Soc 377: 1557–1568

    ADS  Google Scholar 

  • Nieppola E, Tornikoski M, Valtaoja E (2006) Spectral energy distributions of a large sample of BL Lacertae objects. Astron Astrophys 445: 441–450

    ADS  Google Scholar 

  • Nieppola E, Valtaoja E, Tornikoski M, Hovatta T, Kotiranta M (2008) Blazar sequence: an artefact of Doppler boosting. Astron Astrophys 488: 867–872

    ADS  Google Scholar 

  • O’Dea CP (1998) The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ Astron Soc Pacific 110: 493–532

    ADS  Google Scholar 

  • Oh SP (1999) Observational signatures of the first luminous objects. Astrophys J 527: 16–30

    ADS  Google Scholar 

  • Oh SP, Cooray A, Kamionkowski M (2003) Sunyaev–Zeldovich fluctuations from the first stars?. Mon Not R Astro Soc 342: L20–L24

    ADS  Google Scholar 

  • Orienti M, Dallacasa D (2008) Constraining the nature of high frequency peakers. II. Polarization properties. Astron Astrophys 479: 409–415

    ADS  Google Scholar 

  • Orienti M, Dallacasa D, Tinti S, Stanghellini C (2006) VLBA images of high frequency peakers. Astron Astrophys 450: 959–970

    ADS  Google Scholar 

  • Orienti M, Dallacasa D, Stanghellini C (2007) Constraining the nature of high frequency peakers. The spectral variability. Astron Astrophys 475: 813–820

    ADS  Google Scholar 

  • Orr MJL, Browne IWA (1982) Relativistic beaming and quasar statistics. Mon Not R Astro Soc 200: 1067–1080

    ADS  Google Scholar 

  • Overzier RA, Röttgering HJA, Rengelink RB, Wilman RJ (2003) The spatial clustering of radio sources in NVSS and FIRST: implications for galaxy clustering evolution. Astron Astrophys 405: 53–72

    ADS  Google Scholar 

  • Owen FN, Morrison GE (2008) The deep swire field. I. 20 cm continuum radio observations: a crowded sky. Astron J 136: 1889–1900

    ADS  Google Scholar 

  • Pace F, Maturi M, Bartelmann M et al (2008) Statistical properties of SZ and X-ray cluster detections. Astron Astrophys 483: 389–400

    ADS  Google Scholar 

  • Padovani P (2007) The blazar sequence: validity and predictions. APSS 309: 63–71

    ADS  Google Scholar 

  • Padovani P, Urry CM (1992) Luminosity functions, relativistic beaming, and unified theories of high-luminosity radio sources. Astrophys J 387: 449–457

    ADS  Google Scholar 

  • Padovani P, Perlman ES, Landt H, Giommi P, Perri M (2003) What types of jets does nature make? A new population of radio quasars. Astrophys J 588: 128–136

    ADS  Google Scholar 

  • Padovani P, Giommi P, Landt H, Perlman ES (2007) The deep X-ray radio blazar survey. III. Radio number counts, evolutionary properties, and luminosity function of blazars. Astrophys J 662: 182–192

    ADS  Google Scholar 

  • Padovani P, Mainieri V, Tozzi P, Kellermann KI, Fomalont EB, Miller N, Rosati P, Shaver P (2009) The very large array survey of the Chandra Deep Field South. IV. Source population. Astrophys J 694: 235–246

    ADS  Google Scholar 

  • Pauliny-Toth IIK, Wade CM, Heeschen DS (1966) Positions and flux densities of radio sources. Astrophys J 13(Suppl): 65

    ADS  Google Scholar 

  • Peacock JA (1985) The high-redshift evolution of radio galaxies and quasars. Mon Not R Astro Soc 217: 601–631

    ADS  Google Scholar 

  • Peacock JA, Gull SF (1981) Multifrequency models for the cosmological evolution of extragalactic radio sources. Mon Not R Astro Soc 196: 611–633

    ADS  Google Scholar 

  • Peacock JA, Wall JV (1982) Bright extragalactic radio sources at 2.7 GHz. II—observations with the Cambridge 5-km telescope. Mon Not R Astro Soc 198: 843–860

    ADS  Google Scholar 

  • Peacock JA, Nicholson D (1991) The large-scale clustering of radio galaxies. Mon Not R Astro Soc 253: 307–319

    ADS  Google Scholar 

  • Peebles PJE (1980) The large-scale structure of the universe Research supported by the National Science Foundation. Princeton University Press, Princeton, p 435

    Google Scholar 

  • Peebles PJE, Page LA, Partridge RB (2009) Finding the Big Bang. Cambridge University Press, Cambridge

    Google Scholar 

  • Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J 142: 419

    ADS  Google Scholar 

  • Pérez-González PG, Rieke GH, Villar V et al (2008) The stellar mass assembly of galaxies from z = 0 to z = 4: analysis of a sample selected in the rest-frame near-infrared with spitzer. Astrophys J 675: 234–261

    ADS  Google Scholar 

  • Pierpaoli E, Perna R (2004) Radio emission from early-type galaxies and cosmic microwave background experiments. Mon Not R Astro Soc 354: 1005–1010

    ADS  Google Scholar 

  • Pietrobon D, Balbi A, Marinucci D (2006) Integrated Sachs–Wolfe effect from the cross correlation of WMAP 3-year and the NRAO VLA sky survey data: new results and constraints on dark energy. Phys Rev D 74: 043524

    ADS  Google Scholar 

  • Platania P, Burigana C, De Zotti G, Lazzaro E, Bersanelli M (2002) Sunyaev–Zel’dovich effect from quasar-driven blast waves. Mon Not R Astro Soc 337: 242–246

    ADS  Google Scholar 

  • Polatidis A, Wilkinson PN, Xu W et al (1999) Compact symmetric objects in a complete flux density limited sample. New Astron Rev 43: 657–661

    ADS  Google Scholar 

  • Porciani C, Magliocchetti M, Norberg P (2004) Cosmic evolution of quasar clustering: implications for the host haloes. Mon Not R Astro Soc 355: 1010–1030

    ADS  Google Scholar 

  • Prandoni I, Parma P, Wieringa MH et al (2006) The ATESP 5 GHz radio survey. I. Source counts and spectral index properties of the faint radio population. Astron Astrophys 457: 517–529

    ADS  Google Scholar 

  • Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys J 187: 425–438

    ADS  Google Scholar 

  • Quataert E, Narayan R (1999) Spectral models of advection-dominated accretion flows with winds. Astrophys J 520: 298–315

    ADS  Google Scholar 

  • Raccanelli A, Bonaldi A, Negrello M et al (2008) A reassessment of the evidence of the integrated Sachs–Wolfe effect through the WMAP-NVSS correlation. Mon Not R Astro Soc 386: 2161–2166

    ADS  Google Scholar 

  • Readhead ACS, Taylor GB, Pearson TJ, Wilkinson PN (1996) Compact symmetric objects and the evolution of powerful extragalactic radio sources. Astrophys J 460: 634

    ADS  Google Scholar 

  • Rees MJ (1967) Studies in radio source structure-I. A relativistically expanding model for variable quasi-stellar radio sources. Mon Not R Astro Soc 135: 345

    ADS  Google Scholar 

  • Rees N (1990) A deep 38-MHz radio survey of the area delta greater than +60 degrees. Mon Not R Astro Soc 244: 233–246

    ADS  Google Scholar 

  • Rees MJ, Ostriker JP (1977) Cooling, dynamics and fragmentation of massive gas clouds—clues to the masses and radii of galaxies and clusters. Mon Not R Astro Soc 179: 541–559

    ADS  Google Scholar 

  • Rees MJ, Begelman MC, Blandford RD, Phinney ES (1982) Ion-supported tori and the origin of radio jets. Nature 295: 17–21

    ADS  Google Scholar 

  • Rengelink R (1999) Clustering evolution in the radio surveys WENSS and GB6. In: Röttgering HJA, Best PN, Lehnert MD (eds) The most distant radio galaxies. Royal Netherlands Academy of Arts and Sciences, The Netherlands, p 399

    Google Scholar 

  • Rengelink RB, Tang Y, de Bruyn AG et al (1997) The westerbork northern sky survey (WENSS), I. A 570 square degree mini-survey around the north ecliptic pole. Astron Astrophys 124(Suppl): 259–280

    ADS  Google Scholar 

  • Ricci R, Sadler EM, Ekers RD et al (2004) First results from the Australia telescope compact array 18-GHz pilot survey. Mon Not R Astron Soc 354: 305–320

    ADS  Google Scholar 

  • Richards EA (2000) The nature of radio emission from distant galaxies: the 1.4 GHz observations. Astrophys J 533: 611–630

    ADS  Google Scholar 

  • Rigby EE, Best PN, Snellen IAG (2008) A sample of mJy radio sources at 1.4 GHz in the Lynx and Hercules fields—II. Cosmic evolution of the space density of FR I radio sources. Mon Not R Astro Soc 385: 310–334

    ADS  Google Scholar 

  • Robertson JG (1978) Free-form analysis of the cosmological evolution of radio sources. Mon Not R Astron Soc 182: 617–628

    ADS  Google Scholar 

  • Robertson JG (1980) Free-form analysis of the cosmological evolution of radio sources. II—use of the luminosity distribution as data for a self-consistent luminosity function. Mon Not R Astro Soc 190: 143–161

    ADS  Google Scholar 

  • Rosa-González D, Terlevich R, Terlevich E, Friaça A, Gaztaņaga E (2004) On the detectability of the Sunyaev–Zel’dovich effect of massive young galaxies. Mon Not R Astro Soc 348: 669–678

    ADS  Google Scholar 

  • Rottgering HJA, Braun R, Barthel PD et al (2006) LOFAR—opening up a new window on the Universe. ArXiv Astrophysics e-prints arXiv:astro-ph/0610596

  • Rowan-Robinson M (1968) The determination of the evolutionary properties of quasars by means of the luminosity-volume test. Mon Not R Astro Soc 138: 445

    ADS  Google Scholar 

  • Rowan-Robinson M (1970) Extra-galactic radio source-1. The interpretation of radio source-counts. Mon Not R Astro Soc 149: 365

    ADS  Google Scholar 

  • Rowan-Robinson M, Benn CR, Lawrence A, McMahon RG, Broadhurst TJ (1993) The evolution of faint radio sources. Mon Not R Astro Soc 263: 123–130

    ADS  Google Scholar 

  • Ryle M, Scheuer PAG (1955) Spatial distribution and the nature of radio stars. R Soc Lond Proc Ser A 230: 448–462

    ADS  Google Scholar 

  • Ryle M, Clarke RW (1961) An examination of the steady-state model in the light of some recent observations of radio sources. Mon Not R Astro Soc 122: 349

    ADS  Google Scholar 

  • Ryle M, Smith FG, Elsmore B (1950) A preliminary survey of the radio stars in the Northern Hemisphere. Mon Not R Astron Soc 110: 508

    ADS  Google Scholar 

  • Sadler EM, Jackson CA, Cannon RD et al (2002) Radio sources in the 2dF galaxy redshift survey—II. Local radio luminosity functions for AGN and star-forming galaxies at 1.4 GHz. Mon Not R Astro Soc 329: 227–245

    ADS  Google Scholar 

  • Sadler EM, Ricci R, Ekers RD et al (2006) The properties of extragalactic radio sources selected at 20GHz. Mon Not R Astro Soc 371: 898–914

    ADS  Google Scholar 

  • Sadler EM, Cannon RD, Mauch T et al (2007) Radio galaxies in the 2SLAQ luminous red galaxy survey—I. The evolution of low-power radio galaxies to z˜ 0.7. Mon Not R Astro Soc 381: 211–227

    ADS  Google Scholar 

  • Sadler EM, Ricci R, Ekers RD et al (2008) The extragalactic radio-source population at 95GHz. Mon Not R Astron Soc 385: 1656–1672

    ADS  Google Scholar 

  • Saunders W, Rowan-Robinson M, Lawrence A et al (1990) The 60-micron and far-infrared luminosity functions of IRAS galaxies. Mon Not R Astro Soc 242: 318–337

    ADS  Google Scholar 

  • Scheuer PAG (1957) A statistical method for analysing observations of faint radio stars. In: Proceedings of the Cambridge Philosophical Society, vol 53, pp 764–773

  • Scheuer PAG (1974) Models of extragalactic radio sources with a continuous energy supply from a central object. Mon Not R Astro Soc 166: 513–528

    ADS  Google Scholar 

  • Scheuer PAG (1987) Tests of beaming models. In: Zensus JA, Pearson TJ (eds) Superluminal radio sources. Cambridge University Press, Cambridge, pp 104–113

    Google Scholar 

  • Scheuer PAG, Readhead ACS (1979) Superluminally expanding radio sources and the radio-quiet QSOs. Nature 277: 182–185

    ADS  Google Scholar 

  • Schmidt M (1963) 3C 273 : a star-like object with large red-shift. Nature 197: 1040

    ADS  Google Scholar 

  • Schmidt M (1965) Large redshifts of five quasi-stellar sources. Astrophys J 141: 1295

    ADS  Google Scholar 

  • Schmidt M (1968) Space distribution and luminosity functions of quasi-stellar radio sources. Astrophys J 151: 393

    ADS  Google Scholar 

  • Schmidt M (1976) On the apparent absence of evolution of quasi-stellar radio sources with flat radio spectra. Astrophys J Lett 209: L55

    ADS  Google Scholar 

  • Schmidt M, Schneider DP, Gunn JE (1995) Spectrscopic CCD surveys for quasars at large redshift. IV. Evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astron J 110: 68

    ADS  Google Scholar 

  • Scott SE, Dunlop JS, Serjeant S (2006) A combined re-analysis of existing blank-field SCUBA surveys: comparative 850-μm source lists, combined number counts, and evidence for strong clustering of the bright submillimetre galaxy population on arcminute scales. Mon Not R Astro Soc 370: 1057–1105

    ADS  Google Scholar 

  • Seaton DB, Partridge RB (2001) Possible radio afterglow of a 1989 gamma-ray burst. Publ Astron Soc Pacific 113: 6–9

    ADS  Google Scholar 

  • Seldner M., Peebles PJE (1981) Clustering of 4C radio sources. Mon Not R Astron Soc 194: 251–260

    ADS  Google Scholar 

  • Seymour N, McHardy IM, Gunn KF (2004) Radio observations of the 13hXMM-Newton/ROSAT deep X-ray survey area. Mon Not R Astron Soc 352: 131–141

    ADS  Google Scholar 

  • Seymour N, Dwelly T, Moss D et al (2008) The star formation history of the Universe as revealed by deep radio observations. Mon Not R Astron Soc 386: 1695–1708

    ADS  Google Scholar 

  • Shakeshaft JR, Ryle M, Baldwin JE, Elsmore B, Thomson JH (1955) A survey of radio sources between declinations −38 and +83. Mon Not R Astron Soc 67: 106–154

    ADS  Google Scholar 

  • Shaver PA, Pierre M (1989) Large-scale anisotropy in the sky distribution of extragalactic radio sources. Astron Astrophys 220: 35–41

    ADS  Google Scholar 

  • Shaver PA, Wall JV, Kellermann KI, Jackson CA, Hawkins MRS (1996) Decrease in the space density of quasars at high redshift. Nature 384: 439–441

    ADS  Google Scholar 

  • Shaver PA, Hook IM, Jackson CA, Wall JV, Kellermann KI (1999) The redshift cutoff and the quasar epoch. In: Carilli CL, Radford SJE, Menten KM, Langston GI (eds) Highly redshifted radio lines. Astronomical Society of the Pacific Conference Series, vol 156. Astronomical Society of the Pacific, p 163

  • Sheth RK, Tormen G (1999) Large-scale bias and the peak background split. Mon Not R Astron Soc 308: 119–126

    ADS  Google Scholar 

  • Shklovskii IS (1952) On the nature of Galactic radio emission. Astron Zh 29: 418

    Google Scholar 

  • Sikora M, Begelman MC, Rees MJ (1994) Comptonization of diffuse ambient radiation by a relativistic jet: the source of gamma rays from blazars?. Astrophys J 421: 153–162

    ADS  Google Scholar 

  • Silverman JD, Green PJ, Barkhouse WA et al (2005) Comoving space density of X-ray-selected active galactic nuclei. Astrophys J 624: 630–637

    ADS  Google Scholar 

  • Simpson C, Martínez-Sansigre A, Rawlings S et al (2006) Radio imaging of the Subaru/XMM-Newton Deep Field - I. The 100-μJy catalogue, optical identifications, and the nature of the faint radio source population. Mon Not R Astron Soc 372: 741–757

    ADS  Google Scholar 

  • Smith FG (1952) The determination of the position of a radio star. Mon Not R Astron Soc 112: 497–513

    ADS  Google Scholar 

  • Smolčić V, Schinnerer E, Scodeggio M et al (2008) A new method to separate star-forming from AGN galaxies at intermediate redshift: the submillijansky radio population in the VLA-COSMOS survey. Astrophys J 177(Suppl): 14–38

    Google Scholar 

  • Snellen IAG (2008) GPS & CSS radio sources and space-VLBI. ArXiv e-prints 0802.1976

  • Snellen IAG, Best PN (2001) Distant FR I radio galaxies in the hubble deep field: implications for the cosmological evolution of radio-loud AGN. Mon Not R Astron Soc 328: 897

    ADS  Google Scholar 

  • Snellen IAG, Schilizzi RT, Miley GK et al (2000) On the evolution of young radio-loud AGN. Mon Not R Astron Soc 319: 445–456

    ADS  Google Scholar 

  • Staniszewski Z, Ade PAR, Aird KA et al (2009) Galaxy clusters discovered with a Sunyaev–Zel’dovich effect survey. Astrophys J 701: 32–41

    ADS  Google Scholar 

  • Steidel CC, Giavalisco M, Dickinson M, Adelberger KL (1996) Spectroscopy of Lyman break galaxies in the hubble deep field. Astron J 112: 352

    ADS  Google Scholar 

  • Stern D (2000) Probing the dark ages: observations of the high-redshift universe. Publ Astron Soc Pacific 112: 1411

    ADS  Google Scholar 

  • Subrahmanya CR, Harnett JI (1987) The local radio luminosity function of galaxies at 843 MHz. Mon Not R Astron Soc 225: 297–305

    ADS  Google Scholar 

  • Sullivan W III (2009) Cosmic noise. Cambridge University Press (in press)

  • Sunyaev RA, Zeldovich YB (1972) The observations of relic radiation as a test of the nature of X-ray radiation from the clusters of galaxies. Comm Astrophys Space Phys 4: 173

    ADS  Google Scholar 

  • Takeuchi TT, Yoshikawa K, Ishii TT (2003) The luminosity function of IRAS point source catalog redshift survey galaxies. Astrophys J Lett 587: L89–L92

    ADS  Google Scholar 

  • Taylor GB, Marr JM, Pearson TJ, Readhead ACS (2000) Kinematic age estimates for four compact symmetric objects from the Pearson–Readhead survey. Astrophys J 541: 112–119

    ADS  Google Scholar 

  • Taylor AC, Grainge K, Jones ME et al (2001) The radio source counts at 15 GHz and their implications for cm-wave CMB imaging. Mon Not R Astron Soc 327: L1–L4

    ADS  Google Scholar 

  • Taylor AR, Stil JM, Grant JK et al (2007) Radio polarimetry of the ELAIS N1 field: polarized compact sources. Astrophys J 666: 201–211

    ADS  Google Scholar 

  • The Planck Collaboration (2006) The scientific programme of Planck. ArXiv Astrophysics e-prints, arXiv:astro-ph/0604069

  • Tinti S, Dallacasa D, de Zotti G, Celotti A, Stanghellini C (2005) High frequency peakers: young radio sources or flaring blazars?. Astron Astrophys 432: 31–43

    ADS  Google Scholar 

  • Tinti S, de Zotti G (2006) Constraints on evolutionary properties of GHz Peaked Spectrum galaxies. Astron Astrophys 445: 889–899

    ADS  Google Scholar 

  • Toffolatti L, Franceschini A, Danese L, de Zotti G (1987) The local radio luminosity function of galaxies. Astron Astrophys 184: 7–15

    ADS  Google Scholar 

  • Toffolatti L, Argueso Gomez F, de Zotti G et al (1998) Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission. Mon Not R Astron Soc 297: 117–127

    ADS  Google Scholar 

  • Toffolatti L, De Zotti G, Argüeso F, Burigana C (1999) Extragalactic radio sources and CMB anisotropies. In: de Oliveira-Costa A, Tegmark M (eds) Microwave foregrounds. Astronomical Society of the Pacific Conference Series, vol 181. Astronomical Society of the Pacific, p 153

  • Torniainen I, Tornikoski M, Teräsranta H, Aller MF, Aller HD (2005) Long term variability of gigahertz-peaked spectrum sources and candidates. Astron Astrophys 435: 839–856

    ADS  Google Scholar 

  • Trushkin SA (2003) Radio spectra of the WMAP catalog sources. Bull Spec Astrophys Obs 55: 90–132

    ADS  Google Scholar 

  • Tschager W, Schilizzi RT, Röttgering HJA, Snellen IAG, Miley GK (2000) The GHz-peaked spectrum radio galaxy 2021+614: detection of slow motion in a compact symmetric object. Astron Astrophys 360: 887–895

    ADS  Google Scholar 

  • Tucci M, Martínez-González E, Toffolatti L, González-Nuevo J, De Zotti G (2004) Predictions on the high-frequency polarization properties of extragalactic radio sources and implications for polarization measurements of the cosmic microwave background. Mon Not R Astron Soc 349: 1267–1277

    ADS  Google Scholar 

  • Turtle AJ, Pugh JF, Kenderdine S, Pauliny-Toth IIK (1962) The spectrum of the galactic radio emission—I. Observations of low resolving power. Mon Not R Astron Soc 124: 297

    ADS  Google Scholar 

  • Urry CM, Padovani P (1995) Unified schemes for radio-loud active galactic nuclei. Publ Astron Soc Pacific 107: 803

    ADS  Google Scholar 

  • Valtonen MJ, Lehto HJ, Nilsson K et al (2008) A massive binary black-hole system in OJ287 and a test of general relativity. Nature 452: 851–853

    ADS  Google Scholar 

  • van Breugel W, De Breuck C, Stanford SA et al (1999) A radio galaxy at Z = 5.19. Astrophys J Lett 518: L61–L64

    ADS  Google Scholar 

  • Verheijen MAW, Oosterloo TA, van Cappellen WA et al (2008) Apertif, a focal plane array for the WSRT. In: Minchin R, Momjian E (eds) The evolution of galaxies through the neutral hydrogen window. American Institute of Physics Conference Series, vol 1035. American Institute of Physics, New York, pp 265–271

    Google Scholar 

  • Vigotti M, Carballo R, Benn CR et al (2003) Decline of the space density of quasars between z = 2 and z = 4. Astrophys J 591: 43–52

    ADS  Google Scholar 

  • Voss H, Bertoldi F, Carilli C et al (2006) Quasars in the MAMBO blank field survey. Astron Astrophys 448: 823–829

    ADS  Google Scholar 

  • Waddington I, Dunlop JS, Peacock JA, Windhorst RA (2001) The LBDS Hercules sample of mJy radio sources at 1.4 GHz—II. Redshift distribution, radio luminosity function, and the high-redshift cut-off. Mon Not R Astron Soc 328: 882–896

    ADS  Google Scholar 

  • Waizmann J-C, Bartelmann M (2009) Impact of early dark energy on the Planck SZ cluster sample. Astron Astrophys 493: 859–870

    MATH  ADS  Google Scholar 

  • Waldram EM, Yates JA, Riley JM, Warner PJ (1996) The 7C survey of radio sources at 151 MHz - a region covering RA 9h to 16h and Dec. 20 deg to 35 deg. Mon Not R Astron Soc 282: 779–787

    ADS  Google Scholar 

  • Waldram EM, Pooley GG, Grainge KJB et al (2003) 9C: a survey of radio sources at 15 GHz with the Ryle Telescope. Mon Not R Astron Soc 342: 915–925

    ADS  Google Scholar 

  • Waldram EM, Bolton RC, Pooley GG, Riley JM (2007) Some estimates of the source counts at Planck Surveyor frequencies, using the 9C survey at 15 GHz. Mon Not R Astron Soc 379: 1442–1452

    ADS  Google Scholar 

  • Waldram EM, Pooley GG, Davies ML, Grainge KJB, Scott PF (2009) 9C continued: a radio-source survey at 15 GHz. ArXiv e-prints: arXiv:astro-ph/0304275

  • Wall JV (1980) Evidence for the cosmological evolution of active galaxies. R Soc Lond Phil Trans Ser A 296: 367–383

    ADS  Google Scholar 

  • Wall JV (1994) Populations of extragalactic radio sources. Aust J Phys 47: 625–655

    ADS  Google Scholar 

  • Wall JV, Jackson CA (1997) Dual-population radio source unification. Mon Not R Astron Soc 290: L17–L22

    ADS  Google Scholar 

  • Wall JV, Pearson TJ, Longair MS (1980) Models of the cosmological evolution of extragalactic radio sources. I—the 408-MHz source count. Mon Not R Astron Soc 193: 683–706

    ADS  Google Scholar 

  • Wall JV, Pearson TJ, Longair MS (1981) Models of radio source evolution. II—the 2700-MHz source count. Mon Not R Astron Soc 196: 597–610

    ADS  Google Scholar 

  • Wall JV, Jackson CA, Shaver PA, Hook IM, Kellermann KI (2005) The Parkes quarter-Jansky flat-spectrum sample. III. Space density and evolution of QSOs. Astron Astrophys 434: 133–148

    ADS  Google Scholar 

  • Wall JV, Pope A, Scott D (2008) The evolution of submillimetre galaxies: two populations and a redshift cut-off. Mon Not R Astron Soc 383: 435–444

    ADS  Google Scholar 

  • Waxman E (1997) Gamma-ray–burst afterglow: supporting the cosmological fireball model, constraining parameters, and making predictions. Astrophys J Lett 485: L5

    ADS  Google Scholar 

  • Webster A (1976) The clustering of radio sources. I—the theory of power-spectrum analysis. II: the 4C, GB and MC1 surveys. Mon Not R Astron Soc 175: 61–83

    ADS  Google Scholar 

  • White SDM, Rees MJ (1978) A catalog of 1.4 GHz radio sources from the FIRST survey. Mon Not R Astron Soc 183: 341

    ADS  Google Scholar 

  • White RL, Becker RH, Helfand DJ, Gregg MD (1997) A catalog of 1.4 GHz radio sources from the FIRST survey. Astrophys J 475: 479

    ADS  Google Scholar 

  • Wijers RAMJ, Galama TJ (1999) Physical parameters of GRB 970508 and GRB 971214 from their afterglow synchrotron emission. Astrophys J 523: 177–186

    ADS  Google Scholar 

  • Willmer CNA (1997) Estimating galaxy luminosity functions. Astron J 114: 898–912

    ADS  Google Scholar 

  • Willott CJ, Rawlings S, Blundell KM, Lacy M, Eales SA (2001) The radio luminosity function from the low-frequency 3CRR, 6CE and 7CRS complete samples. Mon Not R Astron Soc 322: 536–552

    ADS  Google Scholar 

  • Wilman RJ, Miller L, Jarvis MJ et al (2008) A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. Mon Not R Astron Soc 388: 1335–1348

    ADS  Google Scholar 

  • Windhorst RA, van Heerde GM, Katgert P (1984) A deep Westerbork survey of areas with multicolor Mayall 4 M plates. I—the 1412 MHz catalogue, source counts and angular size statistics. Astron Astrophys 58(Suppl): 1–37

    ADS  Google Scholar 

  • Windhorst RA, Miley GK, Owen FN, Kron RG, Koo DC (1985) Sub-millijansky 1.4 GHz source counts and multicolor studies of weak radio galaxy populations. Astrophys J 289: 494–513

    ADS  Google Scholar 

  • Windhorst RA, Hopkins A, Richards EA, Waddington I (1999) The vigor of radio astronomy at Hy age: a review of faint radio source population. In: Bunker AJ, Breugel WJM (eds) The Hy-redshift universe: galaxy formation and evolution at high redshift. Astronomical Society of the Pacific Conference Series, vol 193. Astronomical Society of the Pacific, San Francisco, p 55

    Google Scholar 

  • Woltjer L (1966) Inverse Compton radiation in quasi-stellar objects. Astrophys J 146: 597

    ADS  Google Scholar 

  • Wright A, Otrupcek R (1990) Parkes catalog, 1990, Australia telescope national facility. PKS Catalog (1990), Australia

  • Wright EL, Chen X, Odegard N et al (2009) Five-year Wilkinson microwave anisotropy probe observations: source catalog. Astrophys J 180(Suppl): 283–295

    Google Scholar 

  • Yamada M, Sugiyama N, Silk J (1999) The Sunyaev–Zeldovich effect by cocoons of radio galaxies. Astrophys J 522: 66–73

    ADS  Google Scholar 

  • York DG, Adelman J, Anderson JE Jr. et al (2000) The sloan digital sky survey: technical summary. Astron J 120: 1579–1587

    ADS  Google Scholar 

  • Yun MS, Reddy NA, Condon JJ (2001) Radio properties of infrared-selected galaxies in the IRAS 2 Jy sample. Astrophys J 554: 803–822

    ADS  Google Scholar 

  • Zwart JTL, Barker RW, Biddulph P et al (2008) The arcminute microkelvin imager. Mon Not R Astron Soc 391: 1545–1558

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco De Zotti.

Electronic supplementary material

The below is the Electronic Supplementary Material.

ESM (PDF 59 kb)

ESM (PDF 17.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Zotti, G., Massardi, M., Negrello, M. et al. Radio and millimeter continuum surveys and their astrophysical implications. Astron Astrophys Rev 18, 1–65 (2010). https://doi.org/10.1007/s00159-009-0026-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-009-0026-0

Keywords

Navigation