Skip to main content
Log in

An efficient lightweight design strategy for body-in-white based on implicit parameterization technique

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In the early design phase of vehicles, performing lightweight design of body-in-white (BIW) using shape, size and topology optimization is a challenge. The large amount of design parameters including size, shape of cross-sections and positions of various parts are the main contributors to the challenge, which will lead to the huge computational cost for running a large number of finite element (FE) simulations and function evaluations. To handle this problem, an efficient lightweight design strategy which integrates implicit parameterization technique, global sensitivity analysis (GSA) and Pareto set pursuing (PSP) algorithm is proposed in this paper to explore the lightweight design of BIW. Firstly, a full parameterized model of BIW is established with implicit parametrization technique via SFE-CONCEPT. Secondly, the GSA technique is used to reduce the dimensions of design space. Finally, the parameterized model of BIW is optimized by PSP method directly in the reduced design space. It is clearly shown that the optimized BIW structure signifies the noticeable improvement from the baseline model. The results demonstrate that the proposed method is capable in generating a well-distributed Pareto optimal frontier, and can largely reduce the design complexity of BIW lightweight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Almeida AT (2012) Multi-criteria model for selection of preventive maintenance intervals. Qual Reliab Eng Int 28:585–593

    Google Scholar 

  • Arwade SR, Moradi M, Louhghalam A (2010) Variance decomposition and global sensitivity for structural systems. Eng Struct 32(1):1–10

    Article  Google Scholar 

  • Bojanowski C, Kulak RF (2011) Multi-objective optimization and sensitivity analysis of a paratransist bus structure for rollover and side impact tests. Int J Crashworthiness 16(6):665–676

    Article  Google Scholar 

  • Catrinu MD, Nordgård DE (2011) Integrating risk analysis and multi-criteria decision support under uncertainty in electricity distribution system asset management. Reliab Eng Syst Saf 96:663–670

    Article  Google Scholar 

  • Chen VCP, Tsui KL, Barton RR (2006) A review on design, modeling and applications of computer experiments. IIE Trans 38(4):273–291

    Article  Google Scholar 

  • Chiandussi G, Avalle M (2002) Maximization of the crushing performance of a tubular device by shape optimization. Comput Struct 80:2425–2432

    Article  Google Scholar 

  • Chiandussi G, Bugeda G, Onate E (2000) Shape variable definition with C0, C1 and C2 continuity functions. Comput Methods Appl Mech Eng 188(4):727–742

    Article  MATH  Google Scholar 

  • Chuang CH, Yang RJ, Li G, Mallela K, Pothuraju P (2008) Multidisciplinary design optimization on vehicle tailor rolled blank design. Struct Multidiscip Optim 35(6):551–560

    Article  Google Scholar 

  • Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. Evol Comput IEEE Trans 8(3):256–279

    Article  Google Scholar 

  • Cui XT, Zhang HW, Wang SX, Zhang LH, Ko JH (2011) Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration. Mater Des 32:815–821

    Article  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions, 6, 182-197

  • Deb A, Mahendrakumar MS, Chavan C, Karve J, Blankenburg D, Storen S (2004) Design of an aluminium-based vehicle platform for front impact safety. Int J Impact Eng 30:1055–1079

    Article  Google Scholar 

  • Doke P, Fard M, Jazar R (2012) Vehicle concept modeling: a new technology for structures weight reduction. Procedia Eng 49:287–293

    Article  Google Scholar 

  • Donders S, Takahashi Y, Hadjit R, Van Langenhove T, Brughmans M, Van Genechten B, Desmet W (2009) A reduced beam and joint concept modeling approach to optimize global vehicle body dynamics. Finite Elem Anal Des 45(6–7):439–455

    Article  Google Scholar 

  • Duan SY, Tao YR, Han X, Yang XJ, Hou SJ, Hu ZP (2014) Investigation on structure optimization of crashworthiness of fiber reinforced polymers materials. Compos Part B 60:471–478

    Article  Google Scholar 

  • Duan LB, Sun GY, Cui JJ, Tao C, Cheng AG, Li GY (2016) Crashworthiness design of vehicle structure with tailor rolled blank. Struct Multidiscip Optim 53(2):321–338

    Article  Google Scholar 

  • Duddeck F, Zimmer H (2012) New achievements on implicit parameterization techniques for combined shape and topology optimization for crashworthiness based on sfe concept. Shape and Topology Optimization for Crashworthiness. ICRASH2012

  • Eskandari H, Geiger CD (2008) A fast Pareto genetic algorithm approach for solving expensive multi-objective optimization problems. J Heuristics 14:203–241

    Article  MATH  Google Scholar 

  • Farkas L, Canadas C, Donders S (2009) Optimization study of a parametric vehicle bumper subsystem under multiple load cases using LMS Virtual. Lab and OPTIMUS. In: Proceedings 7th European LS-DYNA conference, Salzburg

  • Ferreira RJ, de Almeida AT, Cavalcante CA (2009) A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis. Reliab Eng Syst Saf 94:905–912

    Article  Google Scholar 

  • Forsberg J, Nilsson L (2006) Evaluation of response surface methodologies used in crashworthiness optimization. Int J Impact Eng 32(5):759–777

    Article  Google Scholar 

  • Georgios K, Dimitrios S (2009) Multi-disciplinary design optimization exploiting the efficiency of ANSA-LSOPT-META coupling. In: Proceedings 7th European LS-DYNA conference, Salzburg

  • Goede M, Stehlin M, Rafflenbeul L, Kopp G, Beeh E (2009) Super light car-lightweight construction thanks to a multi-material design and function integration. Eur Transp Res Rev 1(1):15–20

    Article  Google Scholar 

  • Gu JC, Li GY, Dong Z (2012) Hybrid and adaptive meta-model-based global optimization. Eng Optim 44(1):87–104

    Article  Google Scholar 

  • Hesse SH, Lukaszewicz DH-JA, Duddeck F (2015) A method to reduce design complexity of automotive composite structures with respect to crashworthiness. Compos Struct 129:236–249

    Article  Google Scholar 

  • Hilmann J, Paas M, Haenschke A, Vietor T (2007) Automatic concept model generation for optimization and robust design of passenger cars. Adv Eng Softw 38(11–12):795–801

    Article  Google Scholar 

  • Homma T, Saltelli A (1996) Importance measures in global sensitivity analysis of nonlinear models. Reliab Eng Syst Saf 52(1):1–17

    Article  Google Scholar 

  • Hou SJ, Li Q, Long SY, Yang XJ, Li W (2007) Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria. Finite Elem Anal Des 43(6):555–565

    Article  Google Scholar 

  • Hou SJ, Li Q, Long SY, Yang XJ, Li W (2008) Multiobjective optimization of multi-cell sections for the crashworthiness design. Int J Impact Eng 35(12):1355–1367

    Article  Google Scholar 

  • Khokhar ZO, Vahabzadeh H, Ziai A, Wang GG, Menon C (2010) On the performance of the PSP method for mixed-variable multi-objective design optimization. ASME J Mech Des 132(7):071009

    Article  Google Scholar 

  • Kopp R, Wiedner C, Meyar A (2005) Flexible rolling for load-adapted blanks. Int Sheet Met Rev 7(4):20–24

    Google Scholar 

  • Li Y, Lin Z, Jiang A, Chen G (2003) Use of high strength steel sheet for lightweight and crashworthy car body. Mater Des 24(3):177–182

    Article  Google Scholar 

  • Li GY, Xu FX, Huang XD, Sun GY (2015) Topology optimization of an automotive tailor-welded blank door. J Mech Des 137(5):055001

    Article  Google Scholar 

  • Liu Q, Lin YZ, Zong JZ, Sun GY, Li Q (2013) Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Compos Struct 97:231–238

    Article  Google Scholar 

  • Mundo D, Hadjit R, Donders S, Brughmans M, Mas P, Desmet W (2009) Simplified modelling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process. Finite Elem Anal Des 45:456–462

    Article  Google Scholar 

  • Pan F, Zhu P (2011) Lightweight design of vehicle front end structure: contributions of multiple surrogates. Int J Veh Des 57(2–3):124–147

    Article  Google Scholar 

  • Pan F, Zhu P, Zhang Y (2010) Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression. Comput Struct 88(1–2):36–44

    Article  Google Scholar 

  • Pan F, Zhu P, Chen W, Viana FAC (2013) Lightweight design of vehicle parameters under crashworthiness using conservative surrogate. Comput Ind 64(3):280–289

    Article  Google Scholar 

  • Park JS (1994) Optimal Latin-hypercube designs for computer experiments. J Stat Plan Infer 39(1):95–111

    Article  MathSciNet  MATH  Google Scholar 

  • Park DK, Jang CD (2010) Optimum SUV bumper system design considering pedestrian performance. Int J Automot Technol 11(6):819–824

    Article  Google Scholar 

  • Park DK, Jang CD, Lee SB, Heo SJ, Yim HJ, Kim MS (2010) Optimizing the shape of a bumper beam section considering pedestrian protection. Int J Automot Technol 11(4):489–494

    Article  Google Scholar 

  • Rais-Rohani M, Solanki K, Eamon C (2006) Reliability-based optimization of lightweight automotive structures for crashworthiness. Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference 6–8 September 2006, Portsmouth, Virginia

  • Rayamajhi M, Hunkeler S, Duddeck F (2014) Geometrical compatibility in structural shape optimization for crashworthiness. Int J Crashworthiness 19(1):42–56

    Article  Google Scholar 

  • Reuter U, Liebscher M (2008) Global sensitivity analysis in view of nonlinear structural behavior. In: LS-DYNA Anwenderforum, Bamberg, Germany; 2008

  • Shahi SK, Wang GG, An LQ, Bibeau E, Pirmoradi Z (2012) Using the Pareto set pursuing multiobjective optimization approach for hybridization of PHEV. J Mech Des 134:094503–1

    Article  Google Scholar 

  • Shan S, Wang GG (2005) An efficient Pareto set identification approach for multi-objective optimization on black-box functions. Trans ASME J Mech Des 127(5):866–874

    Article  Google Scholar 

  • Simon Xu (2007) Use of topology design exploration and parametric shape optimization process to development highly efficient and lightweight vehicle body structure[C/CD]// GM Global CAE Conference, Sep 15, 2007. General Motors Corporation. Detroit, America

  • Sobol’ IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp (Engl Transl) 1:407–414

    MathSciNet  MATH  Google Scholar 

  • Sobol’ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280

    Article  MathSciNet  MATH  Google Scholar 

  • Sobol’ IM (2003) Theorems and examples on high dimensional model representation. Reliab Eng Syst Saf 79(2):187–193

    Article  MathSciNet  Google Scholar 

  • Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  • Sun GY, Li GY, Zhou SW, Li HZ, Hou SJ, Li Q (2011) Crashworthiness design of vehicle by using multiobjective robust optimization. Struct Multidiscip Optim 44:99–110

    Article  Google Scholar 

  • Torstenfelt B, Klarbring A (2007) Conceptual optimal design of modular car product families simultaneous using size, shape and topology optimization. Finite Elem Anal Des 43:1050–1061

    Article  MathSciNet  Google Scholar 

  • Volz K, Frodl B, Dirschmid F, Stryczek R, Zimmer F (2007) Optimizing topology and shape for crashworthiness in vehicle product development. International Automotive Body Congress (IABC), 17–19, June 2007

  • Wang GG, Simpson TW (2004) Fuzzy clustering based hierarchical meta-modeling for space reduction and design optimization. Eng Optim 36:313–335

    Article  Google Scholar 

  • Wang GC, Duan LB, Chen ZK, Chen JS (2015) Body-in-white load path planning method based on progressive space topology optimization technique. China Mech Eng 26(20):2827–2834

    Google Scholar 

  • Xu FX, Sun GY, Li GY, Li Q (2013) Crashworthiness design of multi-component tailor-welded blank (TWB) structures. Struct Multidiscip Optim 48:653–667

    Article  Google Scholar 

  • Xu FX, Sun GY, Li GY, Li Q (2014a) Experimental investigation on high strength steel (HSS) tailor-welded blanks (TWBs). J Mater Process Technol 214:925–935

    Article  Google Scholar 

  • Xu FX, Sun GY, Li GY, Li Q (2014b) Experimental study on crashworthiness of tailor-welded blank (TWB) thin-walled high-strength steel (HSS) tubular structures. Thin-Walled Struct 74:12–27

    Article  Google Scholar 

  • Yin HF, Wen GL, Hou SJ, Chen K (2011) Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. Mater Des 32(8–9):4449–4460

    Article  Google Scholar 

  • Zhang Y, Lai XM, Zhu P, Wang WR (2006) Lightweight design of automobile component using high strength steel based on dent resistance. Mater Des 27(1):64–68

    Article  Google Scholar 

  • Zhou G, Ma ZD, Gu JC, Li GY, Cheng AG, Zhang W (2016a) Design optimization of a NPR structure based on HAM optimization method. Struct Multidiscip Optim 53(3):635–643

  • Zhou G, Ma ZD, Li GY, Cheng AG, Duan LB, Zhao WZ (2016b) Design optimization of a novel NPR crash box based on multi-objective genetic algorithm. Struct Multidiscip Optim 54:673-684

  • Zimmer H (2010) SFE-CONCEPT reference manual v4.2. Berlin, Germany: SFE-GmbH

  • Zuo W (2013) An object-oriented graphics interface design and optimization software for cross-sectional shape of automobile body. Adv Eng Softw 64:1–10

    Article  Google Scholar 

  • Zuo W (2015) Bi-level optimization for the cross-sectional shape of a thin-walled car body frame with static stiffness and dynamic frequency stiffness constraints. J Automob Eng 229(8):1046–1059

    Article  Google Scholar 

  • Zuo WJ, Li WW, Xu T, Xuan SY, Na JX (2012) A complete development process of finite element software for body-in-white structure with semi-rigid beams in.NET framework. Adv Eng Softw 45(1):261–271

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of National Natural Science Foundation of China under the grant NO. 61232014), and the National Natural Science Foundation of China under the grant NO. 11202072 and 11602054.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohui Hu or Guangyao Li.

Appendix A. Review of Sobol’s method

Appendix A. Review of Sobol’s method

Let I n = [0,1]n represents n-dimensional unit hypercube and x = [x 1,…,x n ] is an n-dimensional design vector defined in the unit hypercube I n. According to Ref. (Sobol’ 2003), f(x) can be decomposed as

$$ f\left(\boldsymbol{x}\right)={f}_0+{\displaystyle \sum_i{f}_i\left({x}_i\right)}+{\displaystyle \sum_{1\le i<j\le n}{f}_{ij}\left({x}_i,{x}_j\right)}+\cdots +{f}_{12\cdots n}\left({x}_1,\cdots, {x}_n\right) $$
(A. 1)

(A. 1) is called ANOVA-representation of f(x), and

$$ {\displaystyle {\int}_0^1{f}_{i_1\cdots {i}_s}\left({x}_{i_1},\cdots, {x}_{i_s}\right)\mathrm{d}{x}_k}=0\kern0.5em \mathrm{f}\mathrm{o}\mathrm{r}\kern0.5em k={i}_1,\cdots, {i}_s $$
(A. 2)

According to (A. 2), the members in (A. 1) are orthogonal which can be expressed as integrals of f(x). Indeed,

$$ \begin{array}{l}{\displaystyle \int f\left(\boldsymbol{x}\right)d\boldsymbol{x}}={f}_0\\ {}{\displaystyle \int f\left(\boldsymbol{x}\right){\displaystyle \prod_{k\ne i}\mathrm{d}{x}_k}}={f}_i\left({x}_i\right)+{f}_0\\ {}{\displaystyle \int f\left(\boldsymbol{x}\right){\displaystyle \prod_{k\ne i,j}\mathrm{d}{x}_k}}={f}_{ij}\left({x}_i,{x}_j\right)+{f}_i\left({x}_i\right)+{f}_j\left({x}_j\right)+{f}_0\end{array} $$
(A. 3)

and so on.

According to (A. 1) and integral operations, we have

$$ {\displaystyle \int {f}^2\left(\boldsymbol{x}\right)d\boldsymbol{x}}-{f}_0^2={\displaystyle \sum_{s=1}^n{\displaystyle \sum_{i_1<\cdots <{i}_s}^n{f^2}_{i_1\cdots {i}_s}\left({x}_{i_1},\cdots, {x}_{i_s}\right)}}d{x}_{i_1}\cdots {x}_{i_s} $$
(A. 4)

The total and partial variances can be respectively expressed as

$$ \begin{array}{l}D={\displaystyle \int {f}^2\left(\boldsymbol{x}\right)d\boldsymbol{x}}-{f}_0^2\\ {}{D}_{i_1\cdots {i}_s}={\displaystyle \int {f}_{i_1\cdots {i}_s}^2\left({x}_{i_1},\cdots, {x}_{i_s}\right)}\mathrm{d}{x}_{i_1}\cdots \mathrm{d}{x}_{i_s},\kern0.5em 1\le {i}_1<\cdots {i}_s\le n,\ s=1,\cdots, n\end{array} $$
(A. 5)

According to (A. 4), the total variance D can thus be decomposed into partial variances \( {D}_{i_1\cdots {i}_s} \) associated with x 1, x 2,…, x n as

$$ D={\displaystyle \sum_{s=1}^n{\displaystyle \sum_{i_1<\cdots <{i}_s}^n{D}_{i_1\cdots {i}_s}}}={\displaystyle \sum_i{D}_i}+{\displaystyle \sum_{1\le i<j\le n}{D}_{ij}}+\cdots +{D}_{12\cdots n} $$
(A. 6)

It should be noted that f(x) and \( {f}_{i_1\cdots {i}_s}\left({x}_{i_1},\cdots, {x}_{i_s}\right) \) are random variables with variances D and \( {D}_{i_1\cdots {i}_s} \), respectively.

The first-order, k-order sensitivity indices and the total sensitivity index for the ith design variable are respectively given by

$$ {S}_i=\frac{D_i}{D},\kern0.5em {S}_{i_1\cdots {i}_k}=\frac{D_{i_1\cdots {i}_k}}{D},\kern0.5em {S}_i^{total}=1-\frac{D_{-i}}{D} $$
(A. 7)

where D − i is the sum of all \( {D}_{i_1\cdots {i}_k} \) terms without the i-th variable. The first-order sensitivity index represents the main effect of a design variable, and higher-order sensitivity indices can capture the effects of interactions among design variables.

Let x i be the i-th variable of x, x − i  = {x 1, ⋯ x (i − 1), x (i + 1), ⋯, x n } is the set of n-1 complementary variables and x = [x i , x -i ]. According to Ref. (Sobol’ 1993), D i can be calculated as

$$ \begin{array}{l}{D}_i={\displaystyle \int f\left(\boldsymbol{x}\right)f\left({x}_i,\ x{\prime}_{-i}\right)d\boldsymbol{x}}dx{\prime}_{-i}-{f}_0^2\\ {} where\kern0.5em dx{\prime}_{-i}={\displaystyle \prod_{k\ne i}\mathrm{d}{x}_k^{\prime }},\kern0.75em k=1,\cdots, n\end{array} $$
(A. 8)

Similarly, D -i can be calculated as

$$ {D}_{-i}={\displaystyle \int f\left(\boldsymbol{x}\right)f\left({x}_i^{\prime },\ {x}_{\mathit{\hbox{-}}i}\right)d\boldsymbol{x}}d{x}_i^{\prime }-{f}_0^2 $$
(A. 9)

For computational expensive engineering problems, multi-dimensional integrals are necessary to obtain the Sobol’ indices when an exact form of the response is not available. Thus, Monte Carlo Sampling (MCS) is used to approximate the integrals. From (A. 3), (A. 5), (A. 7) and (A. 9), the mean value, total and partial variances can be numerically estimated by using MCS efficiently. Consider two independent random points π 1 and π 2 that uniformly distribute in I n, and let π 1 = (x (1) i , x (1)− i ), π 2 = (x (2) i , x (2)− i ), the model f(x) can be evaluated by two points: f(x (1) i , x (1)− i ) and f(x (1) i , x (2)− i ).

Crude Monte Carlo estimation is obtained accurately if N → ∞:

$$ \begin{array}{l}{\widehat{f}}_0=\frac{1}{N}{\displaystyle \sum_{m=1}^Nf\left({x}_i^{(1m)},{x}_{-i}^{(1m)}\right)}\\ {}\widehat{D}=\frac{1}{N}{\displaystyle \sum_{m=1}^N{f}^2\left({x}_i^{(1m)},{x}_{-i}^{(1m)}\right)}-{\widehat{f}}_0^2\\ {}{\widehat{D}}_i=\frac{1}{N}{\displaystyle \sum_{m=1}^Nf\left({x}_i^{(1m)},{x}_{-i}^{(1m)}\right)}f\left({x}_i^{(1m)},{x}_{-i}^{(2m)}\right)-{\widehat{f}}_0^2\\ {}{\widehat{D}}_{-i}=\frac{1}{N}{\displaystyle \sum_{m=1}^Nf\left({x}_i^{(1m)},{x}_{-i}^{(1m)}\right)}f\left({x}_i^{(2m)},{x}_{-i}^{(1m)}\right)-{\widehat{f}}_0^2\end{array} $$
(A. 10)

where N is the number of sample points generated by Monte Carlo method (N = 100000 is selected in this paper), x (1m)− i  = {x (1m)1 , ⋯, x (1m)(i − 1) , x (1m)(i + 1) , ⋯, x (1m) n } represents the set of n-1 complementary variables for the m-th sample point and x (1m) i is the i-th variable for the m-th sample point.

According to (A. 7), the main effect and the total sensitivity index (total effect) for the i-th design variable can be respectively given by

$$ \begin{array}{l}\widehat{S_i}=\frac{{\widehat{D}}_i}{\widehat{D}}\\ {}{\widehat{S}}_i^{total}=1-\frac{{\widehat{D}}_{-i}}{\widehat{D}}\end{array} $$
(A. 11)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Xiao, Nc., Hu, Z. et al. An efficient lightweight design strategy for body-in-white based on implicit parameterization technique. Struct Multidisc Optim 55, 1927–1943 (2017). https://doi.org/10.1007/s00158-016-1621-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1621-0

Keywords

Navigation