Skip to main content
Log in

Stochastic inverse method to identify parameter random fields in a structure

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The parameters in a structure such as geometric and material properties are generally uncertain due to manufacturing tolerance, wear, fatigue and material irregularity. Such parameters are random fields because the uncertain properties vary along the spatial domain of a structure. Since the parameter uncertainties in a structure result in the uncertainty of the structural dynamic behavior, they need to be identified accurately for structural analysis or design. In order to identify the random fields of geometric parameters, the parameters can be measured directly using a 3-dimensional coordinate measuring machine. However, it is often very expensive to measure them directly. It is even impossible to directly measure some parameters such as density and Young’s modulus. For that case, the parameter random fields should be identified from measurable response data samples. In this paper, a stochastic inverse method to identify parameter random fields in a structure using modal data is proposed. The proposed method consists of the following three steps: (i) obtaining realizations of the parameter random field from modal data samples by solving an optimization problem, (ii) obtaining the deterministic terms in the Karhunen-Loève expansion by solving an eigenvalue problem and (iii) estimating the distributions of random variables in the Karhunen-Loève expansion using a maximum likelihood estimation method with kernel density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

w(x, θ):

Random field

\( \overline{w}\left(\mathbf{x}\right) \) :

Mean function of w(x, θ)

α(x, θ):

Zero mean random field

D :

Spatial domain of a structure

x :

Spatial variable vector

θ :

Random event

C(x 1, x 2):

Covariance function of w(x, θ)

λ i :

Eigenvalue of C(x 1, x 2)

f i (x):

Eigenfunction of C(x 1, x 2)

ξ i (θ):

Random variable

a i :

Deterministic coefficient vector of a polynomial chaos expansion

ψ k (η i ):

Hermite polynomial basis function

η i :

Gaussian random variable

ω k n,j and q k j :

Natural frequency and mode vector of a structural system obtained from modal testing

\( {\widehat{\omega}}_{n,j} \) and \( {\widehat{\mathbf{q}}}_j \) :

Natural frequency and mode vector of a structural system obtained from modal analysis

[M] and [K]:

Mass and stiffness matrix of a simulation model

K(⋅):

Kernel function

h :

Smoothing parameter for kernel density

n s :

Number of realizations for kernel density

ϕ i (x):

Bending mode function of a beam

References

  • Angulo JM, Ruiz-Medina MD (1999) Multi-resolution approximation to the stochastic inverse problem. Adv Appl Probab 31:1039–1057

    Article  MathSciNet  MATH  Google Scholar 

  • Arnst M, Clouteau D, Bonnet M (2008) Inversion of probabilistic structural models using measured transfer functions. Comput Methods Appl Mech Eng 197:589–608

    Article  MathSciNet  MATH  Google Scholar 

  • Arnst M, Ghanem R, Soize C (2010) Identification of Bayesian posteriors for coefficients of chaos expansions. J Comput Phys 229:3134–3154

    Article  MathSciNet  MATH  Google Scholar 

  • Atkinson K (1997) The numerical solution of integral equations of the second kind. The press Syndicate of the University of Cambridge, United Kingdom

    Book  MATH  Google Scholar 

  • Betz W, Papaioannou I, Straub D (2014) Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion. Comput Methods Appl Mech Eng 271:109–129

    Article  MathSciNet  MATH  Google Scholar 

  • Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis. Oxford University Press Inc., New York

    MATH  Google Scholar 

  • Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41:507–524

    Article  MathSciNet  MATH  Google Scholar 

  • Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31:105–112

    Article  Google Scholar 

  • Desceliers C, Ghanem RG, Soize C (2006) Maximum likelihood estimation of stochastic chaos representations from experimental data. Int J Numer Methods Eng 66:978–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Desceliers C, Soize C, Ghanem RG (2007) Identification of chaos representations of elastic properties of random media using experimental vibration tests. Comput Mech 39:831–838

    Article  MATH  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis. Chapman & Hall/CRC Texts in Statistical Science

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  • Kaipio J, Somersalo E (2006) Statistical and computational inverse problems. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Kaipio J, Somersalo E (2007) Statistical inverse problems: discretization, model reduction and inverse crimes. J Comput Appl Math 198:493–504

    Article  MathSciNet  MATH  Google Scholar 

  • Karhunen K (1947) Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Annales Acudemiae Scientiarum Fennicae, Series A 137

  • Loéve M (1948) Fonctions aleatoires de seconde ordre. In: Levy P (ed) Processes Stochastiques et Mouvement Brownien. Hermann, Paris

    Google Scholar 

  • Loéve M (1977) Probability theory, 4th edn. Springer, Berlin

    MATH  Google Scholar 

  • Ma X, Zabaras N (2009) An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method. Inverse Problems 25:035013

    Article  MathSciNet  MATH  Google Scholar 

  • Manolis GD, Shaw RP (1996) Boundary integral formulation for 2D and 3D thermal problems exhibiting a linearly varying stochastic conductivity. Comput Mech 17:406–417

    Article  MATH  Google Scholar 

  • Marzouk YM, Najm HN (2009) Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J Comput Phys 228:1862–1902

    Article  MathSciNet  MATH  Google Scholar 

  • Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194:1295–1331

    Article  MathSciNet  MATH  Google Scholar 

  • Mehrez L, Doostan A, Moens D, Vandepitte D (2012) Stochastic identification of composite material properties from limited experimental databases, part II: uncertainty modelling. Mech Syst Signal Process 27:484–498

    Article  Google Scholar 

  • Mignolet MP, Soize C, Avalos J (2013) Nonparametric stochastic modeling of structures with uncertain boundary conditions/coupling between substructures. AIAA J 51:1296–1308

    Article  Google Scholar 

  • Najm HN (2009) Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu Rev Fluid Mech 41:35–52

    Article  MathSciNet  MATH  Google Scholar 

  • Nouy A, Soize C (2014) Random field representations for stochastic elliptic boundary value problems and statistical inverse problems. Eur J Appl Math 25:339–373

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveira SP, Azevedo JS (2015) Numerical approximation of 2D Fredholm integral eigenvalue problems by orthogonal wavelets. Appl Math Comput 267:517–528

    MathSciNet  Google Scholar 

  • Park JS (1994) Optimal Latin-hypercube designs for computer experiments. J Stat Plan Inference 39:95–111

    Article  MathSciNet  MATH  Google Scholar 

  • Park S, Williams MMR, Prinja AK, Eaton MD (2015) Modelling non-Gaussian uncertainties and the Karhunen–Loéve expansion within the context of polynomial chaos. Ann Nucl Energy 76:146–165

    Article  Google Scholar 

  • Roberts AP, Garboczi EJ (2002) Elastic properties of model random three-dimensional open-cell solids. J Mech Phys Solids 50:33–55

    Article  MATH  Google Scholar 

  • Shevtsov BM (1999) Backscattering and inverse problem in random media. J Math Phys 40:4359–4373

    Article  MathSciNet  MATH  Google Scholar 

  • Soize C (2006) Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195:26–64

    Article  MathSciNet  MATH  Google Scholar 

  • Soize C (2008) Construction of probability distributions in high dimension using the maximum entropy principle: applications to stochastic processes, random fields and random matrices. Int J Numer Methods Eng 76:1583–1611

    Article  MathSciNet  MATH  Google Scholar 

  • Soize C (2010) Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data. Comput Methods Appl Mech Eng 199:2150–2164

    Article  MathSciNet  MATH  Google Scholar 

  • Soize C (2011) A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension. Comput Methods Appl Mech Eng 200:3083–3099

    Article  MathSciNet  MATH  Google Scholar 

  • Spanos PD, Ghanem RG (1989) Stochastic finite element expansion for random media. J Eng Mech 115:1035–1053

    Article  Google Scholar 

  • Stuart AM (2010) Inverse problems: a Bayesian perspective. Acta Numerica 19:451–559

    Article  MathSciNet  MATH  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. siam

  • Tleubergenov MI (2001) An inverse problem for stochastic differential systems. Diff Equations 37:751–753

    Article  MathSciNet  MATH  Google Scholar 

  • Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  MATH  Google Scholar 

  • Wang J, Zabaras N (2005) Hierarchical Bayesian models for inverse problems in heat conduction. Inverse Problems 21:183–206

    Article  MathSciNet  MATH  Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60:897–936

    Article  MathSciNet  MATH  Google Scholar 

  • Xi Z, Youn BD, Jung BC, Yoon JT (2015) Random field modeling with insufficient field data for probability analysis and design. Struct Multidiscip Optim 51:599–611

    Article  Google Scholar 

  • Xie WJ, Lin FR (2009) A fast numerical solution method for two dimensional Fredholm integral equations of the second kind. Appl Numer Math 59:1709–1719

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187:137–167

    Article  MathSciNet  MATH  Google Scholar 

  • Yan YJ, Cheng L, Wu ZY, Yam LH (2007) Development in vibration-based structural damage detection technique. Mech Syst Signal Process 21:2198–2211

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1A2A2A01003422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hee Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, C.K., Yoo, H.H. Stochastic inverse method to identify parameter random fields in a structure. Struct Multidisc Optim 54, 1557–1571 (2016). https://doi.org/10.1007/s00158-016-1534-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1534-y

Keywords

Navigation