Skip to main content
Log in

Truss optimization with discrete design variables: a critical review

  • REVIEW ARTICLE
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This review presents developed models, theory, and numerical methods for structural optimization of trusses with discrete design variables in the period 1968 – 2014. The comprehensive reference list collects, for the first time, the articles in the field presenting deterministic optimization methods and meta heuristics. The field has experienced a shift in focus from deterministic methods to meta heuristics, i.e. stochastic search methods. Based on the reported numerical results it is however not possible to conclude that this shift has improved the competences to solve application relevant problems. This, and other, observations lead to a set of recommended research tasks and objectives to bring the field forward. The development of a publicly available benchmark library is urgently needed to support development and assessment of existing and new heuristics and methods. Combined with this effort, it is recommended that the field begins to use modern methods such as performance profiles for fair and accurate comparison of optimization methods. Finally, theoretical results are rare in this field. This means that most recent methods and heuristics are not supported by mathematical theory. The field should therefore re-focus on theoretical issues such as problem analysis and convergence properties of new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Discrete member-size Minimum weight Truss problem

  2. Discrete member-size Minimum weight Truss problem with Deflection constraints

  3. Note that this word is often used in a very broad sense in this article.

  4. The notation AB means that the matrix AB is positive semidefinite.

  5. In this article only single load problems are stated to simplify the notation. All problem formulations, and reformulations, and most methods and heuristics can be generalized to multiple load cases.

  6. The notation mixed integer is herein used for optimization problems with both continuous and discrete/integer/0-1 variables. The term mixed discrete is often used in the structural optimization community.

  7. 7 Semidefinite Programming deals with optimization problems with matrix variables that must be symmetric and positive semidefinite or problems with linear matrix inequalities.

  8. This is, in fact, the predominant way of dealing with constraints in meta heuristics for optimal truss design.

  9. This section is an extension of parts of the Introduction in the doctoral thesis Stolpe (2013). Parts of this section are therefore identical to the corresponding paragraphs in Stolpe (2013).

  10. It can perhaps provide some consolation to those that feel targeted in this section that the author is occasionally throwing bricks in glass houses.

  11. This number does not include different variants and flavours within each class of heuristic or method.

  12. Development and dissemination of the benchmark library together with approval of new problem instances could be a task for a working group under the International Society for Structural and Multidisciplinary Optimization (ISSMO).

References

  • Achtziger W (1998) Multiple load truss topology and sizing optimization: Some properties of minimax compliance. J Optim Theory Appl 98(2):255–280

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Kanzow C (2008) Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math Program 114:69–99

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Kočvara M (2007) Structural topology optimization with eigenvalues. SIAM J Optim 18(4):1129–1164

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Stolpe M (2007) Truss topology optimization with discrete design variables — Guaranteed global optimality and benchmark examples. Struct Multidiscip Optim 34(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Stolpe M (2008) Global optimization of truss topology with discrete bar areas – Part I: Theory of relaxed problems. Comput Optim Appl 40(2):247–280

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Stolpe M (2009) Global optimization of truss topology with discrete bar areas – Part II: Implementation and numerical results. Comput Optim Appl 44(2):315–341

    Article  MathSciNet  MATH  Google Scholar 

  • Achtziger W, Bendsøe M, Ben-Tal A, Zowe J (1992) Equivalent displacement based formulations for maximum strength truss topology design. Impact of Computing in Science and Engineering 4:315–345

    Article  MathSciNet  MATH  Google Scholar 

  • Adeli H, Park H (1996) Hybrid CPN-neural dynamics model for discrete optimization of steel structures. Microcomput Civ Eng 11(5):355–366

    Article  Google Scholar 

  • Arora J, Huang M, Hsieh C (1994) Methods for optimization of nonlinear problems with discrete variables - A review. Structural Optimization 8(2–3):69–85

    Article  Google Scholar 

  • Balas E (1965) An additive algorithm for solving linear programs with 0-1 variables. Oper Res 13(4):517–546

    Article  MathSciNet  Google Scholar 

  • Bauer J, Gutkowski W, Iwanow Z (1981) Discrete method for lattice structures optimization. Eng Optim 5(2):121–127

    Article  Google Scholar 

  • Ben-Tal A, Nemirovski A (1994) Potential reduction polynomial time method for truss topology design. SIAM J Optim 4(3):596–612

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1995) Optimal design of engineering structures. OPTIMA Mathematical Programming Society Newsletter 47:4–9

    Google Scholar 

  • Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7(4):991–1016

    Article  MathSciNet  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (2000) Handbook of semidefinite programming, Kluwer Academic Publishers, chap Structural Design, pp 443–467

  • Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: Analysis, algorithms, and engineering applications. SIAM, Philadelphia

    Book  Google Scholar 

  • Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology Optimization: Theory, Methods and Applications. Springer

  • Bennage W, Dhingra A (1995a) Optimization of truss topology using tabu search. Int J Numer Methods Eng 38(23):4035–4052

    Article  MATH  Google Scholar 

  • Bennage W, Dhingra A (1995b) Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing. Int J Numer Methods Eng 38(16):2753–2773

    Article  MATH  Google Scholar 

  • Blachowski B, Gutkowski W (2008) Discrete structural optimization by removing redundant material. Eng Optim 40(7):685–694

    Article  Google Scholar 

  • Bland J (2001) Optimal structural design by ant colony optimization. Eng Optim 33(4):425–443

    Article  Google Scholar 

  • Bollapragada S, Ghattas O, Hooker J (2001) Optimal design of truss structures by logical-based branch and cut. Oper Res 49(1):42–51

    Article  MathSciNet  MATH  Google Scholar 

  • Bonami P, Cornuéjols G, Dash S, Fischetti M, Lodi A (2008) Projected Chvátal-Gomory cuts for mixed integer linear programs. Math Program 113(2):241–257

    Article  MathSciNet  MATH  Google Scholar 

  • Box M (1965) A new method of constrained optimization and a comparison with other methods. Comput J 8(1):42–52

    Article  MathSciNet  MATH  Google Scholar 

  • Bremicker M, Papalambros P, Loh H (1990) Solution of mixed-discrete structural optimization problems with a new sequential linearization algorithm. Comput Struct 37(4):451–461

    Article  Google Scholar 

  • Brooke A, Kendrick D, Meeraus A (1992) GAMS: A user’s guide, release 2.25. The Scientific Press

  • Cai J, Thierauf G (1996) A parallel evolution strategy for solving discrete structural optimization. Adv Eng Softw 27(1–2):91–96

    Article  Google Scholar 

  • Camp C (2007) Design of space trusses using big bang-big crunch optimization. J Struct Eng-ASCE 133(7):999–1008

    Article  Google Scholar 

  • Camp C, Bichon B (2004) Design of space trusses using ant colony optimization. J Struct Eng-ASCE 130(5):741–751

    Article  Google Scholar 

  • Camp C, Farshchin M (2014) Design of space trusses using modified teaching-learning based optimization. Eng Struct 62–63:87–97

    Article  Google Scholar 

  • Capriles P, Fonseca L, Barbosa H, Lemonge A (2007) Rank-based ant colony algorithms for truss weight minimization with discrete variables. Commun Numer Methods Eng 23(6):553–575

    Article  MathSciNet  MATH  Google Scholar 

  • Cerveira A, Agra A, Bastos F, Gromicho J (2009) New branch and bound approaches for truss topology design with discrete areas. In: Proceedings of the American Conference on Applied Mathematics, Recent Advances in Applied Mathematics, pp 228– 233

  • Chai S, Shi L, Sun H (1999) An application of relative difference quotient algorithm to topology optimization of truss structures with discrete variables. Structural Optimization 18(1):48–55

    Article  Google Scholar 

  • Cook R, Malkus D, Plesha M (1989) Concepts and applications of finite element analysis, 3rd edn. Wiley

  • Csébfalvi A (1999) Discrete optimal weight design of geometrically nonlinear truss-structures. Comput Assist Mech Eng Sci 6(3):313–320

    MATH  Google Scholar 

  • Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5):447–465

    Article  MATH  Google Scholar 

  • Dimou C, Koumousis V (2009) Reliability-based optimal design of truss structures using particle swarm optimization. J Comput Civ Eng 23(2):100–109

    Article  Google Scholar 

  • Dolan E, Moré J (2002) Benchmarking optimization software with performance profiles. Math Program 91(2):201–213

    Article  MathSciNet  MATH  Google Scholar 

  • Dorigo M, Gambardella L (1997) Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  • Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. Journal de Mécanique 3:25–52

    Google Scholar 

  • Duran M, Grossmann I (1986) An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 36(3):307–339

    Article  MathSciNet  MATH  Google Scholar 

  • Ehara S, Kanno Y (2010) Topology design of tensegrity structures via mixed integer programming. Int J Solids Struct 47:571–579

    Article  MATH  Google Scholar 

  • Erbatur F, Hasançebi O, Tütüncü I, Kilic H (2000) Optimal design of planar and space structures with genetic algorithms. Comput Struct 75(2):209–224

    Article  Google Scholar 

  • Erol O, Eksin I (2006) A new optimization method: Big Bang-Big Crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  • Faustino A, Judice J, Ribeiro I, Neves AS (2006) An integer programming model for truss topology optimization. Investigação Operacional 26:111–127

    Google Scholar 

  • Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approximation. Math Program 66:327–349

    Article  MathSciNet  MATH  Google Scholar 

  • Fleury C, Schmit L (1980) Dual methods and approximation concepts in structural synthesis. Tech. rep., NASA, NASA Contactor Report 3236, available from, http://ntrs.nasa.gov

  • Fourer R, Gay D, Kernigham B (2003) AMPL: A Modeling Language for Mathematical Programming. Thomson, Brooks/Cole

  • Galante M (1996) Genetic algorithms as an approach to optimize real-world trusses. Int J Numer Methods Eng 39(3):361–382

    Article  MathSciNet  MATH  Google Scholar 

  • Gay D (1985) Electronic mail distribution of linear programming test problems. Mathematical Programming Society COAL Newsletter 13:10–12

    Google Scholar 

  • Geem Z, Kim J, Loganathan G (2001) A new heuristic optimization algorithm: Harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  • Geoffrion A (1970) Elements of large-scale mathematical programming: Part I: Concepts. Inst Manag Sci 16(11):652–675

    MathSciNet  MATH  Google Scholar 

  • Geoffrion A (1972) Generalized Benders decomposition. J Optim Theory Appl 10(4):237–260

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi M, Hinton E, Wood R (1999) Optimization of trusses using genetic algorithms for discrete and continuous variables. Eng Comput 16(2–3):272–301

    Article  MATH  Google Scholar 

  • Glover F (1989) Tabu search – Part I. ORSA J Comput 1(3):190–206

    Article  MATH  Google Scholar 

  • Glover F (1990) Tabu search – Part II. ORSA J Comput 2(1):4–32

    Article  MATH  Google Scholar 

  • Gould N, Orban D, Toint P (2003) CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans Math Softw 29(4):373–394

    Article  MathSciNet  MATH  Google Scholar 

  • Groenwold A, Stander N, Snyman J (1999) A regional genetic algorithm for the discrete optimal design of truss structures. Int J Numer Methods Eng 44(6):749–766

    Article  MATH  Google Scholar 

  • Groenwold AA, Stander N, Snyman JA (1996) A pseudo-discrete rounding method for structural optimization. Struct Multidiscip Optim 11(3–4):218–227

    Article  Google Scholar 

  • Grossman I, Voudouris V, Ghattas O (1992) Mixed-integer linear programming formulations of some nonlinear discrete design optimization problems. In: Floudas C, Pardalos P (eds) Recent Advances in Global Optimization. Princeton University Press

  • Grossmann I (2002) Review of nonlinear mixed-integer and disjunctive programming techniques. Optim Eng 3(3):227–252

    Article  MathSciNet  MATH  Google Scholar 

  • Guerlement G, Targowski R, Gutkowski W, Zawidzka J, Zawidzki J (2001) Discrete minimum weight design of steel structures using EC3 code. Struct Multidiscip Optim 22(4):322–327

    Article  Google Scholar 

  • Gutkowski W, Bauer J, Zawidzka J (2000) An effective method for discrete structural optimization. Eng Comput 17(4):417–426

    Article  MATH  Google Scholar 

  • Haftka R (1985) Simultaneous analysis and design. AIAA J 23(7):1099–1103

    Article  MathSciNet  MATH  Google Scholar 

  • Hajela P, Lee E (1995) Genetic algorithms in truss topological optimization. Int J Solids Struct 32(22):3341–3357

    Article  MathSciNet  MATH  Google Scholar 

  • Hajela P, Lin CY (1992) Genetic search strategies in multicriterion optimal design. Structural Optimization 4(2):99–107

    Article  Google Scholar 

  • Hasançebi O, Erbatur F (2001) Layout optimization of trusses using improved GA methodologies. Acta Mech 146(1–2):87–107

    Article  MATH  Google Scholar 

  • Hasançebi O, Çarba S, Doǧan E, Erdal F, Saka M (2009) Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput Struct 87(5–6):284–302

    Article  Google Scholar 

  • Hemp W (1973) Optimum Structures. Clarendon Press

  • Holland J (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press

  • Horst R, Pardalos P (eds) (1995) Handbook of Global Optimization. Springer, Berlin

  • Horst R, Tuy H (1993) Global Optimization: Deterministic Approaches. Springer

  • Jenkins W (2002) A decimal-coded evolutionary algorithm for constrained optimization. Comput Struct 80(5–6):471–480

    Article  MathSciNet  Google Scholar 

  • John KV, Ramakrishnan CV (1990) Discrete optimal design of trusses with stress and frequency constraints. Eng Comput 7(1):37–47

    Article  Google Scholar 

  • Juang D, Chang W (2006) A revised discrete Lagrangian-based search algorithm for the optimal design of skeletal structures using available sections. Struct Multidiscip Optim 31(3):201–210

    Article  Google Scholar 

  • Kanno Y (2012) Topology optimization of tensegrity structures under self-weight loads. J Oper Res Soc Jpn 55(2):125–145

    MathSciNet  MATH  Google Scholar 

  • Kanno Y (2013a) Exploring new tensegrity structures via mixed integer programming. Struct Multidiscip Optim 48(1):95–114

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y (2013b) Topology optimization of tensegrity structures under compliance constraint: A mixed integer linear programming approach. Optim Eng 14(1):61–96

    Article  MathSciNet  MATH  Google Scholar 

  • Kanno Y (2015) Global optimization of trusses with constraints on number of different cross-sections: a mixed-integer second-order cone programming approach. Comput Optim Appl. doi:10.1007/s10589-015-9766-0

  • Kanno Y, Guo X (2010) A mixed integer formulation for robust truss topology optimization with stress constraints. Int J Numer Methods Eng 83:1675–1699

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2008) On the performance of Artificial Bee Colony (ABC). Appl Soft Comput 8:687–697

    Article  Google Scholar 

  • Kaveh A, Kalatjari V (2002) Genetic algorithm for discrete-sizing optimal design of trusses using the force method. Int J Numer Methods Eng 55(1):55–72

    Article  MATH  Google Scholar 

  • Kaveh A, Kalatjari V (2004) Size/geometry optimization of trusses by the force method and genetic algorithm. Z Angew Math Mech 84(5):347–357

    Article  MathSciNet  MATH  Google Scholar 

  • Kaveh A, Mandavi VR (2014) Colliding bodies optimization method for optimum discrete design of truss structures. Comput Struct 139:43–53

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2009a) A particle swarm ant colony optimization for truss structures with discrete variables. J Constr Steel Res 65(8–9):1558–1568

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2009b) Size optimization of space trusses using Big Bang-Big Crunch algorithm. Comput Struct 87(17–18):1129–1140

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010a) A charged system search with a fly to boundary method for discrete optimum design of truss structures. Asian Journal of Civil Engineering 11(3):277–293

    Google Scholar 

  • Kaveh A, Talatahari S (2010b) A discrete Big Bang - Big Crunch algorithm for optimal design of skeletal structures. Asian Journal of Civil Engineering 11(1):103–122

    Google Scholar 

  • Kaveh A, Talatahari S (2010c) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    Article  MATH  Google Scholar 

  • Kaveh A, Azar BF, Talatahari S (2008) Ant colony optimization for design of space trusses. International Journal of Space Structures 23(3):167–181

    Article  Google Scholar 

  • Kawamura H, Ohmori H, Kito N (2002) Truss topology optimization by a modified genetic algorithm. Struct Multidiscip Optim 23(6):467–472

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE International Conference on Neural Networks - Conference Proceedings 4:1942–1948

    Article  Google Scholar 

  • Kennedy J, Eberhart R (2001) Swarm Intelligence. Morgan Kaufmann Publisher

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby R, Danna E, Gamrath G, Gleixner A, Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin D, Steffy D, Wolter K (2011) MIPLIB 2010. Mathematical Programming Computation 3(2):103–163

    Article  MathSciNet  Google Scholar 

  • Kočvara M (2010) Truss topology design with integer variables made easy. Tech. rep., School of Mathematics, University of Birmingham, preprint 2010/09, available from www.optimization-online.org

  • Kripka M (2004) Discrete optimization of trusses by simulated annealing. J Braz Soc Mech Sci Eng 26(2):170–173

    Article  Google Scholar 

  • Lazimy R (1986) Extension of the generalized Benders’ decomposition. Communications in Applied Numerical Methods 6:195–203

    Article  Google Scholar 

  • Lee K, Geem Z, Lee S, Bae K (2005) The harmony search heuristic algorithm for discrete structural optimization. Eng Optim 37(7):663–684

    Article  MathSciNet  Google Scholar 

  • Lemonge A, Barbosa H (2004) An adaptive penalty scheme for genetic algorithms in structural optimization. Int J Numer Methods Eng 59(5):703–736

    Article  MATH  Google Scholar 

  • Li L, Huang Z, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 87(7–8):435–443

    Article  Google Scholar 

  • Lin C, Hajela P (1994) Design optimization with advanced genetic search strategies. Adv Eng Softw 21(3):179–189

    Article  Google Scholar 

  • Lipson S, Agrawal K (1974) Weight optimization of plane trusses. J Struct Div - ASCE 100(ST5):865–879

    Google Scholar 

  • Lipson S, Gwin L (1977) Discrete sizing of trusses for optimal geometry. J Struct Div - ASCE 103(ST5):1031–1046

    Google Scholar 

  • Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8(1):109–124

    Article  Google Scholar 

  • Mela K (2014) Resolving issues with member buckling in truss topology optimization using a mixed variable approach. Struct Multidiscip Optim 50(6):1037–1049

    Article  MathSciNet  Google Scholar 

  • Ming-Zhu D (1986) An improved Templeman’s algorithm for the optimum design of trusses with discrete member sizes. Eng Optim 9:303–312

    Article  Google Scholar 

  • Muñoz E, Stolpe M (2011) Generalized Benders’ decomposition for topology optimization problems. J Glob Optim 51(1):149–183

    Article  MATH  Google Scholar 

  • Nemhauser G, Wolsey L (1999) Integer and Combinatorial Optimization. Wiley

  • Ohsaki M (1995) Genetic algorithm for topology optimization of trusses. Comput Struct 57(2):219–225

    Article  MathSciNet  MATH  Google Scholar 

  • Ohsaki M (2001) Random search method based on exact reanalysis for topology optimization of trusses with discrete cross-sectional areas. Comput Struct 79(6):673–679

    Article  Google Scholar 

  • Ohsaki M (2011) Optimization of finite dimensional structures. CRC Press

  • Ohsaki M, Fujisawa K, Katoh N, Kanno Y (1999) Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints. Comput Methods Appl Mech Eng 180(1–2):203–217

    Article  MATH  Google Scholar 

  • Olsen G, Vanderplaats G (1989) Method for nonlinear optimization with discrete design variables. AIAA J 27(11):1584–1589

    Article  Google Scholar 

  • Pardalos P, Romeiin H (eds) (2002) Handbook of Global Optimization: Vol 2. Springer, Berlin

  • Park H, Sung C (2002) Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers. Comput Struct 80(14–15):1305–1316

    Article  Google Scholar 

  • Pyrz M (1990) Discrete optimization of geometrically nonlinear truss structures under stability constraints. Structural Optimization 2(2):125–131

    Article  Google Scholar 

  • Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9):2360–2369

    Article  Google Scholar 

  • Rajan S (1995) Sizing, shape, and topology design optimization op trusses using genetic algorithm. J Struct Eng-ASCE 121(10):1480–1487

    Article  Google Scholar 

  • Rajeev S, Krishnamoorthy C (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng-ASCE 118(5):1233–1250

    Article  Google Scholar 

  • Rajendran M, Murugadoss JR, Justin S (2006) Optimal design of space truss using ant colony metaphor and genetic algorithm - a comparative study. J Struct Eng 33(3):215–224

    Google Scholar 

  • Rasmussen M, Stolpe M (2008) Global optimization of large-scale topology design problems using branch-and-bound methods. Comput Struct 86(13–14):1527–1538

    Article  Google Scholar 

  • Ringertz U (1988) On methods for discrete structural optimization. Eng Optim 13:44–64

    Article  Google Scholar 

  • Rozvany G (2001) On design-dependent constraints and singular topologies. Struct Multidiscip Optim 21:164–172

    Article  Google Scholar 

  • Ryoo J, Hajela P (2004) Handling variable string lengths in GA-based structural topology optimization. Struct Multidiscip Optim 26(5):318–325

    Article  Google Scholar 

  • Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102–103:49–63

    Article  Google Scholar 

  • Sahinidis N, Grossmann I (1991) Convergence properties of generalized Benders decomposition. Comput Chem Eng 15:481–491

    Article  Google Scholar 

  • Saka M (1990) Optimum design of pin-jointed steel structures with practical applications. J Struct Eng-ASCE 116(10):2599–2620

    Article  Google Scholar 

  • Salajegheh E, Vanderplaats G (1993) Optimum design of trusses with discrete sizing and shape variables. Structural Optimization 6(2):79–85

    Article  Google Scholar 

  • Schmit L, Fleury C (1980) Discrete-continuous variable structural synthesis using dual methods. AIAA J 18(12):1515–1524

    Article  MathSciNet  MATH  Google Scholar 

  • Sepulveda A, Cassis J (1986) An efficient algorithm for the optimum design of trusses with discrete variables. Int J Numer Methods Eng 23(6):1111–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Shallan O, Eraky A, Sakr T, Hamdy O (2014) Optimization of plane and space trusses using genetic algorithms. International Journal of Engineering and Innovative Technology 3(7):66–73

    Google Scholar 

  • Shin D, Gurdal Z, Griffin O (1990) A penalty approach for nonlinear optimization with discrete design variables. Eng Optim 16(1):29–42

    Article  Google Scholar 

  • Shojaee S, Arjomand M, Khatibinia M (2013) A hybrid algorithm for sizing and layout optimization of truss structures combining discrete PSO and convex approximation. International Journal of Optimization in Civil Engineering 3:57–83

    Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidiscip Optim 43(5):589–596

    Article  MathSciNet  MATH  Google Scholar 

  • Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony algorithm. Struct Multidiscip Optim 43:85–97

    Article  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62(14):2009–2027

    Article  MATH  Google Scholar 

  • Stolpe M (2007) On the reformulation of topology optimization problems as linear or convex quadratic mixed 0-1 programs. Optim Eng 8:163–192

    Article  MathSciNet  MATH  Google Scholar 

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41(5):661–670

    Article  MATH  Google Scholar 

  • Stolpe M (2011) To bee or not to bee – comments on “Discrete optimum design of truss structures using artificial bee colony algorithm”. Struct Multidiscip Optim 44:707–711

    Article  MathSciNet  Google Scholar 

  • Stolpe M (2013) Models and methods for structural topology optimization with discrete design variables. Technical University of Denmark, Department of Wind Energy, Doctoral dissertation

  • Stolpe M (2015) Truss topology optimization with discrete design variables by outer approximation. J Glob Optim 61(1):139–163

    Article  MathSciNet  MATH  Google Scholar 

  • Stolpe M, Kawamoto A (2005) Design of planar articulated mechanisms using branch and bound. Math Program 103(2):357–398

    Article  MathSciNet  MATH  Google Scholar 

  • Sturm J (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11 & 12:625–653

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1994) On the convexity and concavity of compliances. Structural Optimization 7(1–2):42–46

    Article  Google Scholar 

  • Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10(10):803–805

    Article  Google Scholar 

  • Tang W, Tong L, Gu Y (2005) Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables. Int J Numer Methods Eng 62(13):1737–1762

    Article  MATH  Google Scholar 

  • Templeman A (1988) Discrete optimum structural design. Comput Struct 30(3):511–518

    Article  Google Scholar 

  • Templeman A, Yates D (1983) A segmental method for the discrete optimum design of structures. Eng Optim 6(3):145–155

    Article  Google Scholar 

  • Toakley A (1968) Optimum design using available sections. American Society of Civil Engineers Proceedings. J Struct Div 94:1219–1241

    Google Scholar 

  • Tong W, Liu G (2001) Optimization procedure for truss structures with discrete design variables and dynamic constraints. Comput Struct 79(2):155–162

    Article  Google Scholar 

  • Toğan V, Daloğlu A (2006) Optimization of 3D trusses with adaptive approach in genetic algorithms. Eng Struct 28(7):1019–1027

    Article  Google Scholar 

  • Toğan V, Daloğlu A (2008) An improved genetic algorithm with initial population strategy and self-adaptive member grouping. Comput Struct 86(11–12):1204–1218

    Article  Google Scholar 

  • Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38:45–95

    Article  MathSciNet  Google Scholar 

  • Wang D, Zhang W, Jiang J (2002) Combined shape and sizing optimization of truss structures. Comput Mech 29(4–5):307–312

    Article  MATH  Google Scholar 

  • Wu S, Chow P (1995) Steady-state genetic algorithms for discrete optimization of trusses. Comput Struct 56(6):979–991

    Article  MATH  Google Scholar 

  • Yates D, Templeman A, Boffey T (1982) The complexity of procedures for determining minimum weight trusses with discrete member sizes. Int J Solids Struct 18(6):487–495

    Article  MATH  Google Scholar 

  • Yates D, Boffey T, Templeman A (1983) A heuristic method for the design of minimum weight trusses using discrete member sizes. Comput Methods Appl Mech Eng 37(1):37–55

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Hou Y, Liu S (2014) A new method of discrete optimization for cross-section selection of truss structures. Eng Optim 46(8):1052–1073

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank my colleague Susana Rojas-Labanda for providing many constructive suggestions and for proof-reading drafts of this manuscript. I would also like to sincerely thank three reviewers for detailed and constructive comments and suggestions which improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Stolpe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolpe, M. Truss optimization with discrete design variables: a critical review. Struct Multidisc Optim 53, 349–374 (2016). https://doi.org/10.1007/s00158-015-1333-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1333-x

Keywords

Navigation