Skip to main content
Log in

Crashworthiness design of vehicle structure with tailor rolled blank

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Lightweight and crashworthiness design have been two main challenges in the vehicle industry. These two performances often conflict with each other. To not sacrifice vehicle crashworthiness performance when performing vehicle lightweight design, a novel inner part of front longitudinal beam (FLB-inner) structure with a tailor rolled blank (TRB) concept is proposed in this work, and the corresponding design method is also proposed to minimize the weight of FLB-inner. Firstly, a full-scale vehicle finite element model is adopted and experimentally verified. Secondly, the conventional uniform thickness FLB-inner panel is replaced with a TRB structure, herein, the FLB-inner is divided into four segments with different thickness according to the crashworthiness requirements of frontal impact. Then the material constitutive model and finite element modeling for TRB is established. Thirdly, the optimal Latin hypercube sampling (OLHS) technique is used to generate sampling points and the objective and constraints function values are calculated using commercial software LS-DYNA. Based on the simulation results, the ε-SVR surrogate models are constructed. Finally, the artificial bee colony (ABC) algorithm is applied to obtain the optimal thickness distribution of FLB-inner. The results indicated that the weight of the FLB-inner is reduced by 15.21 %, while the crashworthiness is mproved in comparison with the baseline design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

TRB:

Tailor rolled blank

TWB:

Tailor welded blank

CTZ:

Constant thickness zone

TTZ:

Thickness transition zone

FLB:

Front longitudinal beam

CLB:

Center longitudinal beam

FLB-inner:

Inner part of the front longitudinal beam

FLB-TRB:

Front longitudinal beam with TRB

TRB FLB-inner:

Inner part of front longitudinal beam with TRB

EA:

Energy absorption

UHSS:

Ultra high strength steel

AHSS:

Advanced high strength steel

OLHS:

Optimal Latin hypercube sampling

ABC:

Artificial bee colony

FSV:

Future Steel Vehicle

MDO:

Multidisciplinary design optimization

BIW:

Body-in-white

RSM:

Response surface models

RBF:

Radial basis functions

MARS:

Multivariate adaptive regression splines

KG:

Kriging

SVR:

Support vector regression

ε-SVR:

ε-support vector regression

ν-SVR:

ν-support vector regression

References

  • Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014

    Article  Google Scholar 

  • Allen DM (1974) The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16(1):125–127

    Article  MathSciNet  MATH  Google Scholar 

  • Beiter P, Groche P (2011) On the development of novel light weight profiles for automotive industries by roll forming of tailor rolled blanks. Key Eng Mater 473:45–52

    Article  Google Scholar 

  • Browne MW (2000) Cross-validation methods. J Math Psychol 44(1):108–132

    Article  MathSciNet  MATH  Google Scholar 

  • Chen VCP, Tsui KL, Barton RR, Meckesheimer M (2006) A review on design, modeling and applications of computer experiments. IIE Trans 38(4):273–291

    Article  Google Scholar 

  • Cherkassky V, Mulier F (1998) Learning from data: concepts, theory. Wiley, New York

    MATH  Google Scholar 

  • Chuang CH, Yang RJ, Li G, Mallela K, Pothuraju P (2008) Multidisciplinary design optimization on vehicle tailor rolled blank design. Struct Multidiscip Optim 35(6):551–560

    Article  Google Scholar 

  • Clarke SM, Griebsch JH, Simpson TW (2005) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Des 127(6):1077–1087

    Article  Google Scholar 

  • Cristianni N, Shawe-Taylor J (2000) An introduction to support vector machines and other Kernel-based learning methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dyn N, Levin D, Rippa S (1986) Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM J Sci Stat Comput 7(2):639–659

    Article  MathSciNet  MATH  Google Scholar 

  • Engelund WC, Douglas OS, Lepsch RA, McMillian MM, Unal R (1993) Aerodynamic configuration design using response surface methodology analysis. AIAA, Aircraft Design, Systems and Operations Meeting, Monterey, CA, Aug. 11–13

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–141

    Article  MATH  Google Scholar 

  • Future Steel Vehicle - Final Engineering Report, www.worldautosteel.org (5/17/2011)

  • Goede M, Stehlin M, Rafflenbeul L, Kopp G, Beeh E (2009) Super light car-lightweight construction thanks to a multi-material design and function integration. Eur Transp Res Rev 1(1):15–20

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wisely, MA

    MATH  Google Scholar 

  • Gu GX, Sun GY, Li GY, Mao LC, Li Q (2013) A Comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure. Struct Multidiscip Optim 48:669–684

    Article  Google Scholar 

  • Halquist J (2007) LS-DYNA keyword user’s manual version 971. Livermore Software Technology Corporation, Livermore

    Google Scholar 

  • Hardy RL (1971) Multiquadratic equations of topography and other irregular surfaces. J Geophys Res 76:1905–1915

    Article  Google Scholar 

  • Hirt G, Dávalos-Julca DH (2012) Tailored profiles made of tailor rolled strips by roll forming - part 1 of 2. Steel Res Int 83(1):100–105

    Article  Google Scholar 

  • Hou SJ, Li Q, Long SY, Yang XJ, Li W (2008) Multiobjective optimization of multi-cell sections for the crashworthiness design. Int J Impact Eng 35(12):1355–1367

    Article  Google Scholar 

  • Jeon SJ, Lee MY, Kim BM (2011) Development of automotive door inner panel using AA 5J32 tailor rolled blank. Trans Mater Process 20(7):512–517

    Article  Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodeling techniques under multiple modeling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In Proceedings of the 1995 I.E. International Conference on Neural Networks (4): 1942–1948

  • Kleijnen JP (2009) Kriging metamodeling in simulation: a review. Eur J Oper Res 192(3):707–716

    Article  MathSciNet  MATH  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, pp 1137–1143

  • Kopp R, Wiedner C, Meyer A (2005a) Flexibly rolled sheet metal and its use in sheet metal forming. Adv Mater Res 6–8:81–92

    Article  Google Scholar 

  • Kopp R, Wiedner C, Meyar A (2005b) Flexible rolling for load-adapted blanks. Int Sheet Metal Rev 7(4):20–24

    Google Scholar 

  • Li Y, Lin Z, Jiang A, Chen G (2003) Use of high strength steel sheet for lightweight and crashworthy car body. Mater Des 24(3):177–182

    Article  Google Scholar 

  • Li GY, Xu FX, Huang XD, Sun GY (2015a) Topology optimization of an automotive tailor-welded blank door. J Mech Des 137(5):055001

    Article  Google Scholar 

  • Li GY, Xu FX, Sun GY, Li Q (2015b) A comparative study on thin-walled structures with functionally graded thickness (FGT) and tapered tubes withstanding oblique impact loading. Int J Impact Eng 77:68–83

    Article  Google Scholar 

  • Liao XT, Li Q, Yang XJ, Zhang WG, Li W (2008) Multi-objective optimization for crash safety design of vehicles using stepwise regression model. Struct Multidiscip Optim 35(6):561–569

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58(8):1246–1266

    Article  Google Scholar 

  • Meyer A, Wietbrock B, Hirt G (2008) Increasing of the drawing depth using tailor rolled blanks-numerical and experimental analysis. Int J Mach Tools Manuf 48(5):522–531

    Article  Google Scholar 

  • Muhr und Bender KG (2013) http://www.mubea.com (10.06.13)

  • Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley & Sons, New York

    MATH  Google Scholar 

  • Pan F, Zhu P (2011) Lightweight design of vehicle front end structure: contributions of multiple surrogates. Int J Veh Des 57(2–3):124–147

    Article  Google Scholar 

  • Pan F, Zhu P, Zhang Y (2010) Metamodel-based lightweight design of B-pillar with TWB structure via support vector regression. Comput Struct 88(1–2):36–44

    Article  Google Scholar 

  • Park JS (1994) Optimal Latin-hypercube designs for computer experiments. J Stat Plan Infer 39(1):95–111

    Article  MATH  Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  • Ryabkov N, Jackel F, Van Putten K, Hirt G (2008) Production of blanks with thickness transitions in longitudinal and lateral direction through 3D-strip profile rolling. Int J Mater Form Suppl 1(1):391–394

    Article  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MathSciNet  MATH  Google Scholar 

  • Schölkopf B, Smola AJ (2002) Learning with Kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  • Schölkopf B, Smola AJ, Williamson RC, Bartlett PL (2002) New support vector algorithms. Neural Comput 12(5):1207–1245

    Article  Google Scholar 

  • Shi YL, Zhu P, Shen LB, Lin ZQ (2007) Lightweight design of automotive front side rails with TWB concept. Thin-Walled Struct 45(7):8–14

    Article  Google Scholar 

  • Singh A (2009) An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl Soft Comput 9(2):625–631

    Article  Google Scholar 

  • Song XG, Sun GY, Li GY, Zhao W, Li Q (2013) Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidiscip Optim 47(2):221–231

    Article  MathSciNet  MATH  Google Scholar 

  • Srinivasan D, Seow TH (2003) Evolutionary computation, CEC’03, 8–12 Dec. 4, Canberra, Australia, pp 2292–2297

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Sun GY, Li GY, Li Q (2012) Variable fidelity design based surrogate and artificial bee colony algorithm for sheet metal forming process. Finite Elem Anal Des 59:76–90

    Article  Google Scholar 

  • Sun GY, Xu FX, Li GY, Li Q (2014) Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. Int J Impact Eng 64:62–67

    Article  Google Scholar 

  • Sun GY, Tian XY, Fang JG, Xu FX, Li GY, Huang XD (2015) Dynamical bending analysis and optimization design for functionally graded thickness (FGT) tube. Int J Impact Eng 78:128–137

    Article  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  • Varma S, Simon R (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinf 791

  • Viana FAC, Haftka RT, Steffen V (2009) Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct Multidiscip Optim 39:439–457

    Article  Google Scholar 

  • Wu SR, Zhang XT, Lenk P (2001) Step function-a measure for frontal crash pulse and its applications. Int J Veh Des 26(4):385–394

    Article  Google Scholar 

  • Xiao Z, Fang JG, Sun GY, Li Q (2015) Crashworthiness design for functionally graded foam-filled bumper beam. Adv Eng Softw 85:81–95

    Article  Google Scholar 

  • Zhang Y, Lai XM, Zhu P, Wang WR (2006) Lightweight design of automobile component using high strength steel based on dent resistance. Mater Des 27(1):64–68

    Article  Google Scholar 

  • Zhang Y, Zhu P, Chen GL (2007) Lightweight design of automotive front side rail based on robust optimization. Thin-Walled Struct 45(7–8):670–676

    Article  Google Scholar 

  • Zhang HW, Liu LZ, Hu P, Liu XH (2012a) Numerical simulation and experimental investigation of springback in U-channel forming of tailor rolled blank. Int J Iron Steel Res 19(9):8–12

    Article  Google Scholar 

  • Zhang HW, Liu LZ, Hu P, Liu XH (2012b) Springback characteristics in U-channel forming of tailor rolled blank. Acta Metall Sin English Lett 25(3):207–213

    Google Scholar 

  • Zhu P, Zhang Y, Chen GL (2009) Metamodel-based lightweight design of automotive front body structure using robust optimization. Proc Inst Mech Eng D J Automob Eng 223(9):1133–1147

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported from The Key Project of National Natural Science Foundation of China (61232014) and the Program of NSFC of China (11202072), The Doctoral Fund of Ministry of Education of China (20120161120005), The Open Fund Program of the State Key Laboratory of Vehicle Light-weight Design, P. R. China (20130303) and the Hunan Provincial Science Foundation of China (13JJ4036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiguo Cheng or Guangyao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Sun, G., Cui, J. et al. Crashworthiness design of vehicle structure with tailor rolled blank. Struct Multidisc Optim 53, 321–338 (2016). https://doi.org/10.1007/s00158-015-1315-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1315-z

Keywords

Navigation