Skip to main content
Log in

Structural topology optimization for maximum linear buckling loads by using a moving iso-surface threshold method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper investigates topology design optimization for maximizing critical buckling loads of thin-walled structures using a moving iso-surface threshold (MIST) method. Formulation for maximizing linear buckling loads with additional constraints on load-path continuity and lower bound of eigenvalue is firstly presented. New physical response functions are proposed and expressed in terms of the strain energy densities determined in the two-steps of finite element buckling analysis. A novel approach by introducing a connectivity coefficient is developed to ensure continuity of effective load-path in optimum topology. The lower bound of eigenvalue is defined to eliminate spurious localized buckling modes. The MIST algorithm and its interfaces with commercial finite element (FE) software are given in detail. Numerical results are presented for topology optimization of plate-like structures to maximize critical buckling forces or displacements considering in-plane and out-of-plane buckling respectively. The FE analyses of the re-meshed final solid topologies with and without void material reveal that the presence of the void material has a significant effect on the out-of-plane buckling loads and a minor influence on the in-plane buckling loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

[B]:

Strain–displacement matrix

[D]:

Elastic constant matrix

[K]:

Structural stiffness matrix

[K σ ]:

Structural geometric stiffness matrix

[k]:

Elemental stiffness matrix

[k σ ]:

Elemental geometric stiffness matrix

[N]:

Shape function matrix

[u]:

Vector of physical displacements

[F]:

Vector denoting external loadings

{Y}:

Eigenvector

Φ:

Physical response function

Ω:

Design domain

λ 1 :

The 1st order eigenvalue

λ min :

The lower bound of eigenvalue

k 1 :

Generalized stiffness for the 1st order mode

k σ1 :

Generalized geometric stiffness for mode 1

E s :

Total strain energy in static analysis

E sd :

Strain energy density in static analysis

E λ :

Total strain energy for the 1st order buckling mode

E λd :

Strain energy density for buckling mode 1

N e :

Total element number

N n :

Total node number

t:

The level or threshold value of the iso-surface S

V e :

Element volume with solid materials

V 0 :

Structure volume with solid materials

V f :

Volume fraction

x e :

Weighting factor ranging from 0 to 1

E :

Young’s modulus

ν :

Poisson’s ratio

e:

Subscript for the eth element

References

  • Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology Optimization: Theory, Methods and Applications. Springer, Berlin

    Google Scholar 

  • Bendsøe MP, Triantafyllidis N (1990) Scale effects in the optimal design of a microstructured medium against buckling. Int J Solids Struct 26(7):725–741

    Article  Google Scholar 

  • Ben-Tal A, Jarre F, Kočvara M, Nemirovski A, Zowe J (2000) Optimal design of trusses under a nonconvex global buckling constraint. Optim Eng 1(2):189–213

    Article  MathSciNet  MATH  Google Scholar 

  • Browne PA, Budd C, Gould NIM, Kim HA, Scott JA (2012) A fast method for binary programming using first-order derivatives, with application to topology optimization with buckling constraints. Int J Numer Methods Eng 92(12):1026–1043

    Article  MathSciNet  Google Scholar 

  • Bruyneel M, Colson B, Remouchamps A (2008) Discussion on some convergence problems in buckling optimisation. Struct Multidiscip Optim 35(2):181–186

    Article  Google Scholar 

  • Cheng K-T, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323

    Article  MathSciNet  MATH  Google Scholar 

  • Cook RD, Malkus DS, Plesha ME (2001) Concepts and applications of finite element analysis, 4th edn. Wiley, New York, c2001

    Google Scholar 

  • Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  • Eldred MS, Venkayya VB, Anderson WJ (1995) Mode tracking issues in structural optimization. AIAA J 33(10):1926–1933

    Article  MATH  Google Scholar 

  • Kasaiezadeh, A., Khajepour, A. and Jahed, H. (2010). Using level set method in order to design structures against buckling. Proceedings of the ASME Design Engineering Technical Conference

  • Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421

    Article  MathSciNet  MATH  Google Scholar 

  • Lund E (2009) Buckling topology optimization of laminated multi-material composite shell structures. Compos Struct 91(2):158–167

    Article  Google Scholar 

  • Ma Z-D, Kikuchi N, Cheng H-C (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Manickarajah D, Xie YM, Steven GP (1998) An evolutionary method for optimization of plate buckling resistance. Finite Elem Anal Des 29(3–4):205–230

    Article  MATH  Google Scholar 

  • Manickarajah D, Xie YM, Steven GP (2000) Optimisation of columns and frames against buckling. Comput Struct 75(1):45–54

    Article  MATH  Google Scholar 

  • Mateus HC, Soares CMM, Soares CAM (1997) Buckling sensitivity analysis and optimal design of thin laminated structures. Comput Struct 64(1–4):461–472

    Article  MATH  Google Scholar 

  • MSC.Software (2011). MD Nastran 2011 & MSC Nastran 2011 Dynamic Analysis User’s Guide. Santa Ana, CA 92707, USA., MSC.Software Corporation

  • Neves MM, Rodrigues H, Guedes JM (1995) Generalized topology design of structures with a buckling load criterion. Struct Optim 10(2):71–78

    Article  Google Scholar 

  • Neves MM, Sigmund O, Bendsøe MP (2002) Topology optimization of periodic microstructures with a penalization of highly localized buckling modes. Int J Numer Methods Eng 54(6):809–834

    Article  MATH  Google Scholar 

  • Niu B, Yan J, Cheng G (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim 39(2):115–132

    Article  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  • Pedersen NL, Nielsen AK (2003) Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Optim 25(5–6):436–445

    Article  Google Scholar 

  • Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput (Swansea, Wales) 15(8):1031–1048

    Article  Google Scholar 

  • Rahmatalla S, Swan CC (2003) Continuum topology optimization of buckling-sensitive structures. AIAA J 41(6):1180–1189

    Article  Google Scholar 

  • Rong JH, Xie YM, Yang XY (2001) An improved method for evolutionary structural optimisation against buckling. Comput Struct 79(3):253–263

    Article  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252

    Article  Google Scholar 

  • Sekimoto T, Noguchi H (2001) Homologous topology optimization in large displacement and buckling problems. JSME Int J A Solid Mech Mater Eng 44(4):616–622

    Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level Set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Tenek HL, Hagiwara I (1994) “Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming”. JSME Int J C Dyn Control Robot Des Manuf 37(4):667–677

    Google Scholar 

  • Tong LY, Lin JZ (2011) Structural topology optimization with implicit design variable-optimality and algorithm. Finite Elem Anal Des 47(8):922–932

    Article  Google Scholar 

  • Vasista S, Tong LY (2012) Design and testing of pressurized cellular planar morphing structures. AIAA J 50(6):1328–1338

    Article  Google Scholar 

  • Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891

    Article  MathSciNet  Google Scholar 

  • Zhao Q, Ding Y, Jin H (2011) A layout optimization method of composite wing structures based on carrying efficiency criterion. Chin J Aeronaut 24(4):425–433

    Article  Google Scholar 

  • Zhou M (2004) Topology optimization for shell structures with linear buckling responses. Computational Mechanics, WCCM VI, Beijing

    Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Australian Research Council via Discovery-Project Grants (DP110104123 and DP140104408).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyong Tong.

Appendices

Appendix A. Calculation of strain energy density and construction of the Φ function

In MIST, the Φ function is constructed by its nodal values, which can be extracted from elemental data. The strain energy density in static stress analysis and that in buckling analysis for mode 1 in the e th element can be calculated by:

$$ {E}_{sd}=\frac{1}{2}{\left\{{\boldsymbol{\upsigma}}_s^e\right\}}^T\left\{{\boldsymbol{\upvarepsilon}}_s^{\mathbf{e}}\right\}=\frac{1}{2}{\left\{{\mathbf{u}}_{\mathbf{s}}^{\mathbf{e}}\right\}}^T{\left[\mathbf{B}\right]}^T\left[\mathbf{D}\right]\left[\mathbf{B}\right]\left\{{\mathbf{u}}_{\mathbf{s}}^{\mathbf{e}}\right\} $$
(A1)
$$ {E}_{\lambda d}=\frac{1}{2}{\left\{{\boldsymbol{\upsigma}}_{\lambda_1}^{\mathbf{e}}\right\}}^T\left\{{\boldsymbol{\upvarepsilon}}_{\lambda_1}^{\mathbf{e}}\right\}=\frac{1}{2{k}_{\sigma 1}}{\left\{{\mathbf{Y}}_1^{\mathbf{e}}\right\}}^T{\left[\mathbf{B}\right]}^T\left[\mathbf{D}\right]\left[\mathbf{B}\right]\left\{{\mathbf{Y}}_1^{\mathbf{e}}\right\} $$
(A2)

where {σ e s } and {ε e s } are the stress and strain in the static analysis; \( \left\{{\boldsymbol{\upsigma}}_{\lambda_{\mathbf{1}}}^{\mathbf{e}}\right\} \) and \( \left\{{\boldsymbol{\upvarepsilon}}_{\lambda_{\mathbf{1}}}^{\mathbf{e}}\right\} \) are those in buckling analysis for the 1st order mode; [B] and [D] are the strain–displacement and elastic constant matrices. The strain energy densities at Gaussian points can be determined for element by element by using (A1) and (A2), and then the Φ function surface can be constructed by evaluating their nodal values through averaging the values at the surrounding Gaussian points as in (Tong and Lin 2011; Vasista and Tong 2012) or using other stress or strain recovery techniques.

As an alternative approach, the element-based average strain energy densities for the e th element at static and buckling analyses can be calculated by:

$$ \begin{array}{cc}\hfill {E}_{sd}^e=\frac{1}{2{V}_e}{\left\{{u}_s^{\mathbf{e}}\right\}}^T\left[{\mathbf{k}}_{\mathbf{e}}\right]\left\{{u}_s^{\mathbf{e}}\right\}\kern2em \hfill & \hfill \left(e = 1,\ 2, \dots, {N}_e\right)\hfill \end{array} $$
(A3)
$$ \begin{array}{cc}\hfill {E}_{\lambda}^e=\frac{1}{2{k}_{\sigma 1}{V}_e}{\left\{{\mathbf{Y}}_i^e\right\}}^T\left[{\mathbf{k}}_{\mathbf{e}}\right]\left\{{\mathbf{Y}}_{\mathbf{i}}^{\mathbf{e}}\right\}\kern1em \hfill & \hfill \left(e = 1,\ 2, \dots, {N}_e\right)\hfill \end{array} $$
(A4)

where [k e ] is the stiffness matrix of the e th element. The nodal values of strain energy densities can be found by using 2nd order polynomial interpolation over adjacent three elements. This alternative approach may be handy as some commercial FEA software can output data of strain energy densities at element centres or even at element nodes. Therefore, the Φ function surface is formed by connecting its nodal values and it will be further normalized to a range [−1, 1] to avoid dealing with too small or large numerals in the present computations.

Appendix B. Interfaces of MIST with MSC NASTRAN

2.1 B.1 Create FEA input file

Data input file ‘eigen.bdf for NASTRAN is created in the 1st iteration and then modified by using updated element weight factors in the subsequent iterations. In the created/modified input file, the following statements should be included in Sections ‘Global Case Control’ and ‘Bulk Data’:

Global Case Control:

Subcase 1

TITLE = static analysis

ESE(THRESH = 1.E-32) = ALL

Subcase 2

TITLE = buckling analysis

ESE(THRESH = 1.E-96) = ALL

Bulk Data:

EIGRL,1, 1.E-3,,10, 0,,,MAX

ESE statement used to directly extract elemental strain energies and their densities at each element centre. Very small threshold values are set so that the energy densities at all elements can be output. In the bulk data entry EIGRL, 1.0E-3 or the reasonable positive value must be entered in the 3rd column for satisfying the constraint of 0 < λ min < λ 1 to eliminate the spurious local buckling mode.

2.2 B.2 Read strain energy densities from the FEA output file

The following function can be used to read the strain energy density at element center in static analysis the 1st order mode from NASTRAN output file ‘eigen.f06’.

fid = fopen(‘eigen.f06’,‘r’);

Block = 1;

while (~feof(fid))

InputTextS = textscan(fid,‘%s’,1,‘delimiter’,‘\n’);

SS = cell2mat(InputTextS{1,1});

SS1 = ‘SUBCASE 1 * TOTAL ENERGY OF ALL ELEMENTS IN SET’;

SS2 = ‘E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ ODULE)’;

TFS1 = strncmp(SS,SS1,30);

TFS2 = strncmp(SS,SS2,30);

if TFS1

InputTextS = textscan(fid,‘%s’,2,‘delimiter’,‘\n’);

HeaderLines{Block,1} = InputTextS{1};

NumCols = 4;

FormatString = repmat(‘%f’,1,NumCols);

InputTextS = textscan(fid,FormatString,46);

Data{Block,:} = cell2mat(InputTextS);

[NumRows,NumCols] = size(Data{Block});

Block = Block + 1;

elseif TFS2

break;

end

end

ESES0 = cell2mat(Data);

ESES0(:,1:3) = [];

ESES(1:Ne, :) = ESES0(1:Ne);

fclose(fid);

The following function can be used to read the strain energy density at element center in buckling analysis for the 1st order mode from NASTRAN output file ‘eigen.f06’.

fid = fopen(‘eigen.f06’,‘r’);

Block = 1;

while (~feof(fid))

InputText = textscan(fid,‘%s’,1,‘delimiter’,‘\n’);

S = cell2mat(InputText{1,1});

S1 = ‘MODE 1 * TOTAL ENERGY OF ALL ELEMENTS IN SET’;

S2 = ‘MODE 2 * TOTAL ENERGY OF ALL ELEMENTS IN SET’;

TF1 = strncmp(S,S1,30);

TF2 = strncmp(S,S2,30);

if TF1

InputText = textscan(fid,‘%s’,2,‘delimiter’,‘\n’);

HeaderLines{Block,1} = InputText{1};

NumCols = 4;

FormatString = repmat(‘%f’,1,NumCols);

InputText = textscan(fid,FormatString,45);

Data{Block,:} = cell2mat(InputText);

[NumRows,NumCols] = size(Data{Block});

Block = Block + 1;

elseif TF2

break;

end

end

ESEG = cell2mat(Data);

ESEG(:,1:3) = [];

fclose(fid);

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Tong, L. Structural topology optimization for maximum linear buckling loads by using a moving iso-surface threshold method. Struct Multidisc Optim 52, 71–90 (2015). https://doi.org/10.1007/s00158-015-1286-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1286-0

Keywords

Navigation