Skip to main content
Log in

Design of phononic crystals for self-collimation of elastic waves using topology optimization method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Self-collimating phononic crystals (PCs) are periodic structures that enable self-collimation of waves. While various design parameters such as material property, period, lattice symmetry, and material distribution in a unit cell affect wave scattering inside a PC, this work aims to find an optimal material distribution in a unit cell that exhibits the desired self-collimation properties. While earlier studies were mainly focused on the arrangement of self-collimating PCs or shape changes of inclusions in a unit cell having a specific topological layout, we present a topology optimization formulation to find a desired material distribution. Specifically, a finite element based formulation is set up to find the matrix and inclusion material distribution that can make elastic shear-horizontal bulk waves propagate along a desired target direction. The proposed topology optimization formulation newly employs the geometric properties of equi-frequency contours (EFCs) in the wave vector space as essential elements in forming objective and constraint functions. The sensitivities of these functions with respect to design variables are explicitly derived to utilize a gradient-based optimizer. To show the effectiveness of the formulation, several case studies are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Bucay J, Roussel E, Vasseur J, Deymier P, Hladky-Hennion A, Pennec Y, Muralidharan K, Djafari-Rouhani B, Dubus B (2009) Positive, negative, zero refraction, and beam splitting in a solid/air phononic crystal: theoretical and experimental study. Phys Rev B 79(21):214305

    Article  Google Scholar 

  • Cao Y, Hou Z, Liu Y (2004) Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals. Solid State Commun 132(8):539–543

    Article  Google Scholar 

  • Chiang C-Y, Luan P-G (2010) Imaging off-plane shear waves with a two-dimensional phononic crystal lens. J Phys Condens Matter 22(5):055405

    Article  Google Scholar 

  • Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization I: linear systems, vol 1. Springer, Berlin

    Google Scholar 

  • Cicek A, Kaya OA, Ulug B (2011) Wide-band all-angle acoustic self-collimation by rectangular sonic crystals with elliptical bases. J Phys D Appl Phys 44(20):205104

    Article  Google Scholar 

  • Cicek A, Kaya OA, Ulug B (2012a) Impacts of uniaxial elongation on the bandstructures of two-dimensional sonic crystals and associated applications. Appl Acoust 73(1):28–36

    Article  Google Scholar 

  • Cicek A, Kaya OA, Ulug B (2012b) Refraction-type sonic crystal junction diode. Appl Phys Lett 100(11):111905

    Article  Google Scholar 

  • Diaz A, Haddow A, Ma L (2005) Design of band-gap grid structures. Struct Multidiscip Optim 29(6):418–431

    Article  Google Scholar 

  • Economou EN, Sigalas M (1994) Stop bands for elastic waves in periodic composite materials. J Acoust Soc Am 95(4):1734–1740

    Article  Google Scholar 

  • Fornberg B (1988) Generation of finite difference formulas on arbitrarily spaced grids. Math Comput 51(184):699–706

    Article  MATH  MathSciNet  Google Scholar 

  • Frei WR, Tortorelli DA, Johnson HT (2005) Topology optimization of a photonic crystal waveguide termination to maximize directional emission. Appl Phys Lett 86(11):111114

    Article  Google Scholar 

  • Gao D, Zhou Z, Citrin DS (2008) Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice. J Opt Soc Am A 25(3):791–795

    Article  Google Scholar 

  • Guest JK, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  Google Scholar 

  • Halkjær S, Sigmund O, Jensen JS (2006) Maximizing band gaps in plate structures. Struct Multidiscip Optim 32(4):263–275

    Article  Google Scholar 

  • Huang Y, Liu S, Zhao J (2013) Optimal design of two-dimensional band-gap materials for uni-directional wave propagation. Struct Multidiscip Optim 48(3):487–499

    Article  MathSciNet  Google Scholar 

  • Hussein MI (2009) Reduced Bloch mode expansion for periodic media band structure calculations. Proc Royal Soc A: Math, Physi Eng Sci 465(2109):2825–2848

    Article  MATH  MathSciNet  Google Scholar 

  • Hussein MI, Hamza K, Hulbert GM, Saitou K (2007) Optimal synthesis of 2D phononic crystals for broadband frequency isolation. Waves Random Complex Media 17(4):491–510

    Article  MATH  MathSciNet  Google Scholar 

  • Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B 22(6):1191–1198

    Article  Google Scholar 

  • Kaya OA, Cicek A, Ulug B (2012) Self-collimated slow sound in sonic crystals. J Phys D Appl Phys 45(36):365101

    Article  Google Scholar 

  • Kobayashi F, Biwa S, Ohno N (2004) Wave transmission characteristics in periodic media of finite length: multilayers and fiber arrays. Int J Solids Struct 41(26):7361–7375

    Article  MATH  Google Scholar 

  • Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S (1998) Superprism phenomena in photonic crystals. Phys Rev B 58(16):R10096–R10099

    Article  Google Scholar 

  • Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S (1999) Self-collimating phenomena in photonic crystals. Appl Phys Lett 74(9):1212–1214

    Article  Google Scholar 

  • Kushwaha M, Halevi P, Martinez G, Dobrzynski L, Djafari-Rouhani B (1994) Theory of acoustic band structure of periodic elastic composites. Phys Rev B 49(4):2313–2322

    Article  Google Scholar 

  • Langlet P, Hladky‐Hennion AC, Decarpigny JN (1995) Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method. J Acoust Soc Am 98:2792–2800

    Article  Google Scholar 

  • Liang WY, Wang TB, Yin CP, Dong JW, Leng FC, Wang HZ (2010) Super-broadband non-diffraction guiding modes in photonic crystals with elliptical rods. J Phys D Appl Phys 43(7):075103

    Article  Google Scholar 

  • Pérez-Arjona I, Sánchez-Morcillo VJ, Redondo J, Espinosa V, Staliunas K (2007) Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media. Phys Rev B 75(1):014304

    Article  Google Scholar 

  • Prather DW, Shi S, Murakowski J, Schneider GJ, Sharkawy A, Chen C, Miao B, Martin R (2007) Self-collimation in photonic crystal structures: a new paradigm for applications and device development. J Phys D Appl Phys 40(9):2635–2651

    Article  Google Scholar 

  • Rupp CJ, Evgrafov A, Maute K, Dunn ML (2007) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidiscip Optim 34(2):111–121

    Article  MATH  MathSciNet  Google Scholar 

  • Shi J, Lin S-CS, Huang TJ (2008) Wide-band acoustic collimating by phononic crystal composites. Appl Phys Lett 92(11):111901

    Article  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band–gap materials and structures by topology optimization. Philos Trans Royal Soc A: Math Phys Eng Sci 361(1806):1001–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Stainko R, Sigmund O (2007) Tailoring dispersion properties of photonic crystal waveguides by topology optimization. Waves Random Complex Media 17(4):477–489

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Tang D, Chen L, Ding W (2006) Efficient beaming from photonic crystal waveguides via self-collimation effect. Appl Phys Lett 89(13):131120

    Article  Google Scholar 

  • Wang F, Jensen JS, Sigmund O (2011) Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. J Opt Soc Am B 28(3):387–397

    Article  Google Scholar 

  • Wu L-Y, Chen L-W, Wu M-L (2008) The nondiffractive wave propagation in the sonic crystal consisting of rectangular rods with a slit. J Phys Condens Matter 20(29):295229

    Article  Google Scholar 

  • Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58(20):2059–2062

    Article  Google Scholar 

  • Zhang X, Liu Z (2004) Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl Phys Lett 85(2):341–343

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant (No: 2014–021950) funded by the Korean Ministry of Education, Science and Technology (MEST), Basic Science Research Program through NRF funded by the Korean Ministry of Education (No: 2014–048162), contracted through Institute of Advanced Machinery and Design at Seoul National University and the Global Frontier R&D Program on Center for Wave Energy Control based on Metamaterials funded by the NRF under the Ministry of Science, ICT & Future Planning, Korea (No: 2014–063711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Young Kim.

Additional information

The main idea of this work was first presented at WCSMO10 (May 19–24, 2013, Orlando, Florida, USA) under the title of “Topology Optimization of Phononic Crystals for Self-collimation of Elastic Waves” by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Ma, P.S. & Kim, Y.Y. Design of phononic crystals for self-collimation of elastic waves using topology optimization method. Struct Multidisc Optim 51, 1199–1209 (2015). https://doi.org/10.1007/s00158-014-1206-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1206-8

Keywords

Navigation