Skip to main content
Log in

Optimization of multiphase structures considering damage

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The present contribution deals with a gradient based optimization strategy to improve the ductility of composite structures. In order to achieve the chosen optimization goal, stiff inclusions in a soft matrix are varied in shape and location controlled by the variation of implicit level-set functions. The eXtended Finite Element Method (XFEM) allows the use of a fixed structured mesh. For the non-linear constitutive behaviour an isotropic damage model is chosen for interface and matrix softening failure; the inclusions are assumed to be elastic. For the calculation of the required sensitivities the influence of the material interfaces, the related enrichment funcions of the X-FEM as well as the kinematic and constitutive relations have to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Engng 45:601– 620

    Article  MATH  Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Engrg 71:197–224

    Article  MathSciNet  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: Theory, methods and applications. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Brewer J, Lagace P (1988) Quadratic stress criterion for initiation of delamination. J Compos Mater 22:1141–1155

    Article  Google Scholar 

  • Choi K, Kim N (2005) Structural sensitivity analysis and optimization 1/2. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Curbach M, Jesse F (2009) Eigenschaften und Anwendung von Textilbeton. Beton- und Stahlbetonbau 104(1):9–16

    Article  Google Scholar 

  • Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Meth Engng 48:1741–1760

    Article  MATH  Google Scholar 

  • Duysinx P, Van Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using x-fem and level set methods. In: Bendsøe MP, Olhoff N, Sigmund O (eds) IUTAM symposium on topological design optimization of structures, machines and materials. Solid mechanics and its applications, vol 137. Springer-Verlag, Berlin, Heidelberg, pp 23–32

    Chapter  Google Scholar 

  • Farsad M, Vernerey F, Park H (2010) An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials. Int J Numer Meth Engng 84:1466–1489

    Article  MATH  MathSciNet  Google Scholar 

  • Foldager J, Hansen J, Olhoff N (1998) A general approach forcing convexity of ply angle optimization in composite laminates. Struct Multidiscip Optim 16:201–211

    Article  Google Scholar 

  • Gibiansky L, Sigmund O (2000) Multiphase composites with extremal bulk modulus. J Mech Phys Solids 48(3):461–498

    Article  MATH  MathSciNet  Google Scholar 

  • Hammer V (1999) Optimal laminate design subject to single membrane loads. Struct Multidiscip Optim 17:65–73

    Article  Google Scholar 

  • Hegger J, Will N, Bruckermann O, Voss S (2006) Load-bearing behaviour and simulation of textile reinforced concrete. Mater Struct 39:765–776

    Article  Google Scholar 

  • Hilchenbach C (2010) Optimierung von Mehrphasenstrukturen mit lokalem Schädigungsverhalten (Optimization of Composites with Interface and Matrix Failure). Ph.D. thesis, Bericht Nr. 54, Institut für Baustatik und Baudynamik, Universität Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2011/6146/

  • Hui C, Ruina A, Long R, Jagota A (2011) Cohesive zone models and fracture. J Adhes 87(1):1–52

    Article  Google Scholar 

  • Karihaloo B, Lange-Kornbak D (2001) Optimization techniques for the design of high-performance fiber-reinforced concrete. Struct Multidiscip Optim 21:32–39

    Article  Google Scholar 

  • Kato J (2010) Material optimization for fiber reinforced composites applying a damage formulation. Ph.D. thesis, Bericht Nr. 53, Institut für Baustatik und Baudynamik, Universität Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2010/5162/

  • Kato J, Ramm E (2010) Optimization of fiber geometry for fiber reinforced composites considering damage. Finite Elem Anal Des 46:401–415

    Article  Google Scholar 

  • Kato J, Ramm E (2013) Multiphase layout optimization for fiber reinforced composites considering a damage model. Eng Struct 49:202–220

    Article  Google Scholar 

  • Kato J, Lipka A, Ramm E (2009) Multiphase material optimization for fiber reinforced composites with strain softening. Struct Multidiscip Optim 39:63–81

    Article  Google Scholar 

  • Kemmler R (2004) Stabilität und große Verschiebungen in der Topologie- und Formoptimierung (Stability and large Deformations in Topology and Shape Optimization). Ph.D. thesis, Bericht Nr. 41, Institut für Baustatik und Baudynamik, Universität Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2004/1636/

  • Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30:459–476

    Article  MATH  MathSciNet  Google Scholar 

  • Lipka A (2007) Verbesserter Materialeinsatz innovativer Werkstoffe durch die Topologieoptimierung (Improved Design of Innovative Materials by Topology Optimization). Ph.D. thesis, Bericht Nr. 47, Institut für Baustatik und Baudynamik, Universität Stuttgart. http://elib.uni-stuttgart.de/opus/voll-texte/2007/3225/

  • Liu Z, Korvink J, Huang R (2005) Structure topology optimization: fully coupled level set method via femlab. Struct Multidiscip Optim 29:407–417

    Article  MATH  MathSciNet  Google Scholar 

  • Luo Z, Wang M, Wang S, Wei P (2008) A level set-based parameterization method for structural shape and topology optimization. Int J Numer Meth Engng 76:1–26

    Article  MATH  MathSciNet  Google Scholar 

  • Maute K (1998) Topologie- und Formoptimierung von dünnwandigen Flächentragwerken (Topology and Shape Optimization of Thin-walled Structures). Ph.D. thesis, Bericht Nr. 47, Institut für Baustatik und Baudynamik, Universität Stuttgart. http://www.ibb.uni-stuttgart.de/publikationen/fulltext/1998/maute-1998.pdf

  • Melenk J, Babus̆ka I (1996) The partition of unity finite element method: Basic theory and applications. Comput Methods Appl Mech Engrg 139(1-4):289–314

    Article  MATH  MathSciNet  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Engng 46:131–150

    Article  MATH  Google Scholar 

  • Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of damage-type cohesive models. J Mech Phys Solids 59(8):1647–1668

    Article  MATH  MathSciNet  Google Scholar 

  • Olhoff N, Lurie K, Cherkaev A, Fedorov A (1981) Sliding regimes and anisotropy in optimal design of vibrating axisymmetric plates. Int J Solids Struct 17(10):931–948

    Article  MATH  MathSciNet  Google Scholar 

  • Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Meth Engng 44:1267–1282

    Article  MATH  Google Scholar 

  • Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Park K, Paulino G, Roesler J (2009) A unified potential-based cohesive model of mixed-mode fracture. J Mech Phys Solids 57(6):891–908

    Article  Google Scholar 

  • Patnaik S, Guptill J, Berke L (1995) Merits and limitations of optimality criteria method for structural optimization. Int J Numer Meth Engng 38:3087–3120

    Article  MATH  Google Scholar 

  • Prechtel M, Leugering G, Steinmann P, Stingl M (2012) Optimal design of brittle composite materials: A nonsmooth approach. J Opt Theory & Appl 155(3):962–985

    Article  MATH  MathSciNet  Google Scholar 

  • RILEM (The International Union of Testing and Research Laboratories for Materials and Structures) (2006) Report rep036: Reinforced Concrete - State-of-the-Art Report of RILEM TC 201-TRC, ed. Brameshuber W

  • Rodrigues H, Soto CA, Taylor JE (1999) A design model to predict optimal two-material composite structures. Struct Multidiscip Optim 17(2-3):186–198

    Article  Google Scholar 

  • Rose J, Smith J, Ferrante J (1981) Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett 47:675– 678

    Article  Google Scholar 

  • Rotthaus M, Barthold FJ (2008) Structural optimization of multi-material structures. In: Toropov VV, Querin OM, Kim HA, Butler R, Sienz J (eds) Proceedings of the 7th asmo UK conference on engineering design optimization, pp 354– 367

  • Sigmund O (2000) A new class of extremal composites. J Mech Phys Solids 48(2):397–428

    Article  MATH  MathSciNet  Google Scholar 

  • Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  • Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Meth Engng 62:2009–2027

    Article  MATH  Google Scholar 

  • Stolpe M, Stegmann J (2008) A newton method for solving continuous multiple material minimum compliance problems. Struct Multidiscip Optim 35:93–106

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Meth Engng 24:359– 373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (2011) MMA and GCMMA, versions September 2007. http://www.math.kth.se/krille/

  • Vigdergauz S (2007) Shape optimization of a rigid inclusion in a shear-loaded elastic plane. J Mech Mat Struct 2(2):275– 291

    Article  Google Scholar 

  • Zhang J, Paulino G, Celes W (2007) Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials. Int J Numer Meth Engng 72(8):893–923

    Article  MATH  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Engrg 89:309–336

    Article  Google Scholar 

Download references

Acknowledgments

The present study has been partially sponsored by the Research Center of Excellence “Simulation Technology” of the University of Stuttgart supported by the Deutsche Forschungsgemeinschaft DFG (German Research Foundation); this support is gratefully acknowledged. The authors also thank Professor Manfred Bischoff for his continuous valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Frédéric Hilchenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilchenbach, C.F., Ramm, E. Optimization of multiphase structures considering damage. Struct Multidisc Optim 51, 1083–1096 (2015). https://doi.org/10.1007/s00158-014-1198-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1198-4

Keywords

Navigation