Skip to main content
Log in

A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper addresses truss topology optimization taking into account robustness to uncertainty in the truss geometry. Specifically, the locations of nodes are assumed not to be known precisely and the compliance in the worst case is attempted to be minimized. We formulate a semidefinite programming problem that serves as a safe approximation of this robust optimization problem. That is, any feasible solution of the presented semidefinite programming problem satisfies the constraints of the original robust optimization problem. Since a semidefinite programming problem can be solved efficiently with a primal-dual interior-point method, we can find a robust truss design efficiently with the proposed semidefinite programming approach. A notable property of the proposed approach is that the obtained truss is guaranteed to be stable. Numerical experiments are performed to illustrate that the optimal truss topology depends on the magnitude of uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Further extensions of this method can be found in, e.g., Asadpoure et al. (2011) and Jalalpour et al. (2011).

  2. It is possible to guarantee stability of the optimal truss by considering structural performance other than the compliance; the fundamental frequency of free vibration is an example (Achtziger and Kočvara 2007; Ohsaki et al. 1999).

References

  • Achtziger W, Kočvara M (2007) Structural topology optimization with eigenvalues. SIAM J Optim 18:1129–1164

    Article  MATH  MathSciNet  Google Scholar 

  • Anjos MF, Lasserre JB (eds) (2012) Handbook on semidefinite, conic and polynomial optimization. Springer, New York

  • Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness—application to truss structures. Comput Struct 89:1131–1141

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Ben-Haim Y (2006) Information-gap decision theory: decisions under severe uncertainty, 2nd edn. Academic Press, London

    Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust Optimization. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Ben-Tal A, Nemirovski A (1997) Robust truss topology optimization via semidefinite programming. SIAM J Optim 7:991–1016

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23:769–805

    Article  MATH  MathSciNet  Google Scholar 

  • Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    Article  MATH  MathSciNet  Google Scholar 

  • Boyd S, El Ghaoul L, Feron E, Balakrishnan V (1987) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Google Scholar 

  • Brittain K, Silva M, Tortorelli DA (2012) Minmax topology optimization. Struct Multidiscip Optim 45:657–668

    Article  MATH  MathSciNet  Google Scholar 

  • Calafiore GC, Dabbene F (2008) Optimization under uncertainty with applications to design of truss structures. Struct Multidiscip Optim 35:189–200

    Article  MATH  MathSciNet  Google Scholar 

  • Calafiore G, El Ghaoui L (2004) Ellipsoidal bounds for uncertain linear equations and dynamical systems. Autom 40:773–787

    Article  MATH  MathSciNet  Google Scholar 

  • Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44:1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Cherkaev E, Cherkaev A (2003) Principal compliance and robust optimal design. J Elast 72:71–98

    Article  MATH  MathSciNet  Google Scholar 

  • Cherkaev E, Cherkaev A (2008) Minimax optimization problem of structural design. Comput Struct 86:1426–1435

    Article  Google Scholar 

  • de Gournay F, Allaire G, Jouve F (2008) Shape and topology optimization of the robust compliance via the level set method. ESAIM: Control, Optimisation and Calculus of Variations 14:43–70

    Article  MATH  MathSciNet  Google Scholar 

  • El Ghaoui L, Oustry F, Lebret H (1998) Robust solutions to uncertain semidefinite programs. SIAM J Optim 9:33–52

    Article  MATH  MathSciNet  Google Scholar 

  • Elishakoff I, Haftka RT, Fang J (1994) Structural design under bounded uncertainty—optimization with anti-optimization. Comput Struct 53:1401–1405

    Article  MATH  Google Scholar 

  • Ganzerli S, Pantelides CP (2000) Optimum structural design via convex model superposition. Comput Struct 74:639–647

    Article  Google Scholar 

  • Guest JK, Igusa T (2008) Structural optimization under uncertain loads and nodal locations. Comput Methods Appl Mech Eng 198:116–124

    Article  MATH  MathSciNet  Google Scholar 

  • Guo X, Bai W, Zhang W, Gao X (2009) Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Methods Appl Mech Eng 198:3378–3399

    Article  MATH  MathSciNet  Google Scholar 

  • Guo X, Du J, Gao X (2011) Confidence structural robust optimization by non-linear semidefinite programming-based single-level formulation. Int J Numer Methods Eng 86:953–974

    Article  MATH  MathSciNet  Google Scholar 

  • Guo X, Zhang W, Zhang L (2013) Robust structural topology optimization considering boundary uncertainties. Comput Methods Appl Mech Eng 253:356–368

    Article  MATH  Google Scholar 

  • Horn RA, Johnson CR (1985) Matrix Analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Jalalpour M, Guest JK, Igusa T (2013) Reliability-based topology optimization of trusses with stochastic stiffness. Struct Saf 43:41–49

    Article  Google Scholar 

  • Jalalpour M, Igusa T, Guest JK (2011) Optimal design of trusses with geometric imperfections: accounting for global instability. Int J Solids Struct 48:3011–3019

    Article  Google Scholar 

  • Jang G-W, van Dijk NP, van Keulen F (2012) Topology optimization of MEMS considering etching uncertainties using the level-set method. Int J Numer Methods Eng 92:571–588

    Article  MathSciNet  Google Scholar 

  • Jansen M, Lombaert G, Diehl M, Lazarov BS, Sigmund O, Schevenels M (2013) Robust topology optimization accounting for misplacement of material. Struct Multidiscip Optim 47:317–333

    Article  MATH  MathSciNet  Google Scholar 

  • Jarre F (2000) An interior method for nonconvex semidefinite programs. Optim Eng 1:347–372

    Article  MATH  MathSciNet  Google Scholar 

  • Kanno Y, Guo X (2010) A mixed integer programming for robust truss topology optimization with stress constraints. Int J Numer Methods Eng 83:1675–1699

    Article  MATH  MathSciNet  Google Scholar 

  • Kanno Y, Takewaki I (2006) Sequential semidefinite program for robust truss optimization based on robustness functions associated with stress constraints. J Optim Theory Appl 130:265–287

    Article  MATH  MathSciNet  Google Scholar 

  • Kanno Y, Takewaki I (2008) Semidefinite programming for uncertain linear equations in static analysis of structures. Comput Methods Appl Mech Eng 198:102–115

    Article  MATH  MathSciNet  Google Scholar 

  • Kanno Y, Takewaki I (2009) Semidefinite programming for dynamic steady-state analysis of structures under uncertain harmonic loads. Comput Methods Appl Mech Eng 198:3239–3261

    Article  MATH  MathSciNet  Google Scholar 

  • Kanzow C, Nagel C, Kato H, Fukushima M (2005) Successive linearization methods for nonlinear semidefinite programs. Comput Optim Appl 31:251–273

    Article  MATH  MathSciNet  Google Scholar 

  • Kuznetsov EN (1988) Underconstrained structural systems. Int J Solids Struct 24:153–163

    Article  MATH  Google Scholar 

  • Lazarov BS, Schevenels M, Sigmund O (2012a) Topology optimization considering material and geometric uncertainties using stochastic collocation methods. Struct Multidiscip Optim 46:597–612

    Article  MATH  MathSciNet  Google Scholar 

  • Lazarov BS, Schevenels M, Sigmund O (2012b) Topology optimization with geometric uncertainties by perturbation techniques. Int J Numer Methods Eng 90:1321–1336

    Article  MATH  Google Scholar 

  • Lombardi M (1998) Optimization of uncertain structures using non-probabilistic models. Comput Struct 67:99–103

    Article  MATH  Google Scholar 

  • Noll D, Torki M, Apkarian P (2004) Partially augmented Lagrangian method for matrix inequality constraints. SIAM J Optim 15:161–184

    Article  MATH  MathSciNet  Google Scholar 

  • Ohsaki M, Fujisawa K, Katoh N, Kanno Y (1999) Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints. Comput Methods Appl Mech Eng 180:203–217

    Article  MATH  Google Scholar 

  • Pantelides CP, Ganzerli S (1998) Design of trusses under uncertain loads using convex models. J Struct Eng (ASCE) 124:318–329

    Article  Google Scholar 

  • Pellegrino S (1993) Structural computations with the singular value decomposition of the equilibrium matrix. Int J Solids Struct 30:3025–3035

    Article  MATH  Google Scholar 

  • Pellegrino S, Calladine CR (1986) Matrix analysis of statically and kinematically indeterminate frameworks. Int J Solids Struct 22:409–428

    Article  Google Scholar 

  • Pólik I (2005) Addendum to the SeDuMi user guide: version 1.1. Technical report, Advanced optimization laboratory. McMaster University, Hamilton. http://sedumi.ie.lehigh.edu/

    Google Scholar 

  • Pólik I, Terlaky T (2007) A survey of S-lemma. SIAM Rev 49:371–418

    Article  MATH  MathSciNet  Google Scholar 

  • Schevenels M, Lazarov BS, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200:3613–3627

    Article  MATH  Google Scholar 

  • Schuëller GI (2006) Developments in stochastic structural mechanics. Arch Appl Mech 75:755–773

    Article  MATH  Google Scholar 

  • Schuëller GI, Jensen HA (2008) Computational methods in optimization considering uncertainties—An overview. Comput Methods Appl Mech Eng 198:2–13

    Article  MATH  Google Scholar 

  • Shapiro A (1997) First and second order analysis of nonlinear semidefinite programs. Math Program 77:301–320

    MATH  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25:227–239

    Article  MATH  Google Scholar 

  • Steele JM (2004) The Cauchy–Schwarz master class: an introduction to the art of mathematical inequalities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Meth Softw 11/12:625–653

    Article  MathSciNet  Google Scholar 

  • Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200:2268–2261

    Article  MATH  MathSciNet  Google Scholar 

  • Tarnai T (2001) Infinitesimal and finite mechanisms. In: Pellegrino S. (ed) Deployable Structures. Springer, Wien, pp 113–142

    Chapter  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43:767–784

    Article  MATH  Google Scholar 

  • Wolkowicz H., Saigal R., Vandenberghe L. (eds) (2000) Handbook on semidefinite programming: theory, algorithms and applications. Kluwer Academic Publishers, Boston

  • Yamashita H, Yabe H (2012) Local and superlinear convergence of a primal-dual interior point method for nonlinear semidefinite programming. Math Program 132:1–30

    Article  MATH  MathSciNet  Google Scholar 

  • Yonekura K, Kanno Y (2010) Global optimization of robust truss topology via mixed integer semidefinite programming. Optim Eng 11:355–379

    Article  MATH  MathSciNet  Google Scholar 

  • Zang C, Friswell MI, Mottershead JE (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83:315–326

    Article  Google Scholar 

Download references

Acknowledgements

The work of the second author is partially supported by Grant-in-Aid for Scientific Research (C) 26420545 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Appendix: Technical lemmas

Appendix: Technical lemmas

This section summarizes technical prerequisites that are known in literature.

We begin with three lemmas related to vector and matrix norms. These lemmas are used in Section 3.2. For p satisfying 1 ≤ p, define p by

$$\frac{1}{p} + \frac{1}{p^{*}} = 1 , $$

where we use the convention 1/ = 0. The p -norm is the dual norm of the p -norm. For any x, \(\boldsymbol {y} \in \mathbb {R}^{n}\), we have that

$$ {\boldsymbol{x}}^{\top}{\boldsymbol{y}} \le \|{\boldsymbol{x}}\|_{p} \|{\boldsymbol{y}}\|_{p^{*}}, $$
(64)

which is known as the Hölder inequality (Horn and Johnson 1985; Steele 2004). For any \({\boldsymbol {x}} \in \mathbb {R}^{n}\), there exists \({\boldsymbol {y}} \in \mathbb {R}^{n}\) satisfying (64) with equality and ∥y p =1. We denote this y by ψ p (x).

Lemma 4

Let \(\mathbb {R} \ni s \ge 0\) be a constant, \({\boldsymbol {x}}\in {\mathbb {R}}^{n}\) and 1 ≤ p ≤ ∞. Then

$$\max_{{\boldsymbol{y}}\in {\mathbb{R}}^{n}} \{ {\boldsymbol{x}}^{\top} {\boldsymbol{y}} : \|{\boldsymbol{y}}\|_{p^{*}} \le s \} = s \| {\boldsymbol{x}} \|_{p}. $$

Proof

For any \({\boldsymbol {x}}\in {\mathbb {R}}^{n}\) and \({\boldsymbol {y}}\in {\mathbb {R}}^{n}\) satisfying ∥y p s, it follows from the Hölder inequality that

$${\boldsymbol{x}}^{\top} {\boldsymbol{y}} \le \left\|{\boldsymbol{x}}\right\|_{p} \left\|{\boldsymbol{y}}\right\|_{p^{*}} \le s \left\|{\boldsymbol{x}}\right\|_{p}. $$

Here, two inequalities are satisfied with equalities at y = s ψ p (x), which concludes the proof. □;

Lemma 4 is used in the proof of Theorem 1 in Section 3.2.

Lemma 5

Let \(x \in \mathbb {R}\) , \({\boldsymbol {y}} \in \mathbb {R}^{n}\) and \(\mathbb {R} \ni r > 0\) . Then

$$\max_{{\boldsymbol{z}}\in {\mathbb{R}}^{n}} \{ x {\boldsymbol{y}}^{\top} {\boldsymbol{z}} : \|{\boldsymbol{z}}\|_{2} \le r \} = r|x| \| {\boldsymbol{y}} \|_{2}. $$

Proof

The Cauchy–Schwarz inequality implies

$$x {\boldsymbol{y}}^{\top} {\boldsymbol{z}} = {\boldsymbol{y}}^{\top} (x {\boldsymbol{z}}) \le \|{\boldsymbol{y}}\|_{2} \| x{\boldsymbol{z}}\|_{2}. $$

From ∥z2r, we obtain

$$\| x{\boldsymbol{z}} \|_{2} \le |x| \|{\boldsymbol{z}}\|_{2} \le |x| r. $$

These inequalities are satisfied with equalities at

$${\boldsymbol{z}} = \left\{\begin{array}{ll} r {\boldsymbol{\psi}}_{2}({\boldsymbol{y}}) & \text{if}\;\; x \ge 0, \\ -r {\boldsymbol{\psi}}_{2}({\boldsymbol{y}}) & \text{if} \;\;x < 0, \\ \end{array}\right. $$

which concludes the proof. □;

Lemma 5 is used in the proof of Theorem 1 in Section 3.2.

For \(A \in \mathbb {R}^{m \times n}\), the matrix norm induced by the Euclidean vector norm is defined by

$$ \| A \|_{2} = \max_{{\boldsymbol{x}}\ne {\boldsymbol{0}}} \frac{\| A{\boldsymbol{x}} \|_{2}}{\|{\boldsymbol{x}}\|_{2}} , $$
(65)

which is equal to the largest singular value of A. From this definition we immediately obtain the following property.

Lemma 6

Let \(A\in {\mathbb {R}}^{m \times n}\) and \({\boldsymbol {x}}\in {\mathbb {R}}^{n}\) . Then

$$\| A{\boldsymbol{x}} \|_{2} \le \|A\|_{2} \|{\boldsymbol{x}}\|_{2}. $$

Lemma 6 is used to show Lemma 1 in Section 3.2.

In the following we establish Lemma 9, which is used in Section 3.2 to formulate the conservative approximation of the robust optimization problem. Two lemmas, Lemma 7 and Lemma 8, prepare for Lemma 9. Firstly, we state the following fact, which is the obvious part of the well-known S-lemma; see, e.g., Boyd et al. (1987) and Pólik and Terlaky (2007).

Lemma 7

Let f 0 , \(f_{1},\dots ,f_{m}:\mathbb {R}^{n} \to \mathbb {R}\) be quadratic functions. The implication

$$ f_{1}({\boldsymbol{x}})\ge 0,\dots,f_{m}({\boldsymbol{x}})\ge 0 \quad\Rightarrow\quad f_{0}({\boldsymbol{x}})\ge 0 $$
(66)

holds if there exist t 1 ,…,t m ≥ 0 satisfying

$$f_{0}({\boldsymbol{x}})\ge \sum\limits_{i=1}^{m} t_{i}f_{i}({\boldsymbol{x}}) \quad (\forall {\boldsymbol{x}}\in{\mathbb{R}}^{n}). $$

Proof

Suppose that (66) does not hold, which means that there exists \(\hat {{\boldsymbol {x}}} \in \mathbb {R}^{n}\) satisfying

$$f_{0}(\hat{{\boldsymbol{x}}}) < 0 , f_{1}(\hat{{\boldsymbol{x}}}) \ge 0 , {\dots} , f_{m}(\hat{{\boldsymbol{x}}}) \ge 0. $$

Then we obtain

$$f_{0}(\hat{{\boldsymbol{x}}}) < 0 \le \sum\limits_{i=1}^{m} t_{i} f_{i}(\hat{{\boldsymbol{x}}}) \quad (\forall t_{1},\dots,t_{m} \ge 0). $$

Thus the contraposition of Lemma 7 has been shown. □;

The following fact can be found, e.g., in Calafiore and El Ghaoui (2004).

Lemma 8

Let \(Q\in {\mathcal {S}^{n}}\) , \({\boldsymbol {p}}\in {\mathbb {R}}^{n}\) and \(r\in {\mathbb {R}}\) . Then the following two conditions are equivalent:

$$ \mathrm{(i)}\;\;\left[\begin{array}{l} 1 \\ {\boldsymbol{x}} \\ \end{array}\right]^{\top} \left[\begin{array}{l} r \;\;{\boldsymbol{p}}^{\top} \\ {\boldsymbol{p}} \;\;Q \\ \end{array}\right] \left[\begin{array}{c} 1 \\ {\boldsymbol{x}} \\ \end{array}\right] \ge 0, \quad \forall {\boldsymbol{x}}\in{\mathbb{R}}^{n}, $$
(67)
$$ \mathrm{(ii)} \;\;\left[\begin{array}{l} r \;\;{\boldsymbol{p}}^{\top} \\ {\boldsymbol{p}}\;\; Q \\ \end{array}\right] \succeq O. $$
(68)

Proof

It is trivial that (ii) implies (i). We show that (i) implies (ii) by contradiction. Suppose that (ii) does not hold, which means that there exists \((\hat {\xi }, \hat {{\boldsymbol {x}}}) \in \mathbb {R} \times \mathbb {R}^{n}\) satisfying

$$ \left[\begin{array}{c} \hat{\xi} \\ \hat{{\boldsymbol{x}}} \\ \end{array}\right]^{\top} \left[\begin{array}{c} r \;\;{\boldsymbol{p}}^{\top} \\ {\boldsymbol{p}} \;\;Q \end{array}\right] \left[\begin{array}{c} \hat{\xi} \\ \hat{{\boldsymbol{x}}} \\ \end{array}\right] < 0. $$
(69)

If \(\hat {\xi } \not = 0\), then (69) is reduced to

$$\left[\begin{array}{c} \hat{{\boldsymbol{x}}}/\hat{\xi} \\ 1 \\ \end{array}\right]^{\top} \left[\begin{array}{l} r \;\;{\boldsymbol{p}}^{\top} \\ {\boldsymbol{p}} \;\;Q \\ \end{array}\right] \left[\begin{array}{c} \hat{{\boldsymbol{x}}}/\hat{\xi} \\ 1 \\ \end{array}\right] < 0 , $$

which contradicts with (i). Hence, suppose \(\hat {\xi }=0\). Then (69) is reduced to

$$ \hat{{\boldsymbol{x}}}^{\top} Q \hat{{\boldsymbol{x}}} < 0. $$
(70)

Let \(\gamma \in \mathbb {R}\) be a parameter and choose \({\boldsymbol {x}} = \gamma \hat {{\boldsymbol {x}}}\) in (i) to reduce the left-hand side to

$$ \left(\hat{{\boldsymbol{x}}}^{\top} {Q} \hat{{\boldsymbol{x}}}\right) \gamma^{2} + 2 \left({\boldsymbol{p}}^{\top} \hat{{\boldsymbol{x}}}\right) \gamma + r. $$
(71)

The left-hand side of (71) is a quadratic function of γ and (70) implies that (71) is not bounded below. Therefore, there exists γ such that (71) becomes negative, which contradicts (i). □;

The following fact is obtained as a straightforward corollary of Lemma 7 and Lemma 8.

Lemma 9

Let f 0 , \(f_{1},\dots ,f_{m} : \mathbb {R}^{n} \to \mathbb {R}\) be quadratic functions defined by

$$f_{i}({\boldsymbol{x}}) = \left[\begin{array}{c} 1 \\ {\boldsymbol{x}} \\ \end{array}\right]^{\top} \left[\begin{array}{c} r_{i} \;\;{\boldsymbol{p}}_{i}^{\top} \\ {\boldsymbol{p}}_{i}\;\; {Q}_{i} \end{array}\right] \left[\begin{array}{c} 1 \\ {\boldsymbol{x}} \\ \end{array}\right] , \quad i=0,1,\dots,m , $$

where \({Q}_{i} \in {\mathcal {S}}^{n}\) , \({\boldsymbol {p}}_{i} \in \mathbb {R}^{n}\) , \(r_{i} \in \mathbb {R}\,(i=0,1,\dots ,m)\) . Then the implication

$$f_{1}({\boldsymbol{x}}) \ge 0,\dots,f_{m}({\boldsymbol{x}}) \ge 0 \quad\Rightarrow\quad f_{0}({\boldsymbol{x}}) \ge 0 $$

holds if there exist t 1 ,…,t m ≥ 0 satisfying

$$\left[\begin{array}{c} r_{0} \;\;{\boldsymbol{p}}_{0}^{\top} \\ {\boldsymbol{p}}_{0}\;\; {Q}_{0} \end{array}\right] \succeq\sum\limits_{i=1}^{m} t_{i} \left[\begin{array}{c} r_{i} \;\;{\boldsymbol{p}}_{i}^{\top} \\ {\boldsymbol{p}}_{i} \;\;{Q}_{i} \end{array}\right]. $$

Lemma 9 plays a key role in proving Theorem 1 in Section 3.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, D., Kanno, Y. A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes. Struct Multidisc Optim 51, 439–461 (2015). https://doi.org/10.1007/s00158-014-1146-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1146-3

Keywords

Navigation