Skip to main content

Advertisement

Log in

Design methodology of piezoelectric energy-harvesting skin using topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper describes a design methodology for piezoelectric energy harvesters that thinly encapsulate the mechanical devices and exploit resonances from higher-order vibrational modes. The direction of polarization determines the sign of the piezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Combining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direction. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequential linear programming on the early stage of the optimization, and the phase field method on the latter stage of the optimization to obtain clear optimal shapes without intermediate density. Numerical examples are provided that illustrate the validity and utility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.  1
Fig.  2
Fig.  3
Fig.  4
Fig.  5
Fig.  6
Fig.  7
Fig.  8
Fig.  9
Fig.  10
Fig.  11
Fig.  12
Fig.  13
Fig.  14
Fig.  15
Fig.  16
Fig.  17

Similar content being viewed by others

References

  • Allaire G (2001) Shape optimization by the homogenization method. Springer, New York

    Google Scholar 

  • Allaire G (2007) Conception optimale de structures. Springer, Berlin

    MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1): 363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1

    Article  Google Scholar 

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175

    Article  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  • Berlincourt DA, Curran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason WP (ed) Physical acoustics, principle and methods, vol 1, Part A. Academic, New York, pp 169–270

    Google Scholar 

  • Bourisli RI, Al-Ajmi MA (2010) Optimization of smart beams for maximum modal electromechanical coupling using genetic algorithms. J Intell Mater Syst Struct 21(9):907–914

    Article  Google Scholar 

  • Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Meth Eng 55(10):1215–1237

    Article  MATH  Google Scholar 

  • Chen S, Gonella S, Chen W, Liu WK (2010) A level set approach for optimal design of smart energy harvesters. Comput Meth Appl Mech Eng 199(37–40):2532–2543

    Article  MATH  MathSciNet  Google Scholar 

  • Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering mems portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001

    Article  Google Scholar 

  • duToit NE, Wardle BL, Kim SG (2005) Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71:121–160

    Article  Google Scholar 

  • Erturk A, Inman DJ (2008a) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130:041002

    Article  Google Scholar 

  • Erturk A, Inman DJ (2008b) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intell Mater Syst Struct 19(11):1311–1325

    Article  Google Scholar 

  • Erturk A, Tarazaga PA, Farmer JR, Inman DJ (2009) Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. J Vib Acoust 131:011010

    Article  Google Scholar 

  • Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solid 57(3):621–633

    Article  MATH  Google Scholar 

  • Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Methods Appl Mech Eng 199(49–52):3153–3168

    Article  MATH  MathSciNet  Google Scholar 

  • Kim S, Clark WW, Wang QM (2005a) Piezoelectric energy harvesting with a clamped circular plate: analysis. J Intell Mater Syst Struct 16(10):847–854

    Article  Google Scholar 

  • Kim S, Clark WW, Wang QM (2005b) Piezoelectric energy harvesting with a clamped circular plate: experimental study. J Intell Mater Syst Struct 16(10):855–863

    Article  Google Scholar 

  • Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14:387–399

    Article  Google Scholar 

  • Landau LD, Pitaevskii LP, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Lee C, Xie J (2009) Design and optimization of wafer bonding packaged microelectromechanical systems thermoelectric power generators with heat dissipation path. J Vac Sci Technol B 27:1267–1271

    Article  Google Scholar 

  • Lee S, Youn BD (2011) A new piezoelectric energy harvesting design concept: multimodal energy harvesting skin. IEEE Trans Ultrason Ferroelectr Freq Control 58(3):629–645

    Article  Google Scholar 

  • Lee S, Youn BD, Jung BC (2009) Robust segment-type energy harvester and its application to a wireless sensor. Smart Mater Struct 18:095021

    Article  Google Scholar 

  • Makihara K, Onoda J, Miyakawa T (2006) Low energy dissipation electric circuit for energy harvesting. Smart Mater Struct 15:1493

    Article  Google Scholar 

  • Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 21(16):1627–1652

    Article  Google Scholar 

  • Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184

    Article  MathSciNet  Google Scholar 

  • Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Comm 26(11):1131–1144

    Article  Google Scholar 

  • Rupp CJ, Evgrafov A, Maute K, Dunn ML (2009) Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells. J Intell Mater Syst Struct 20(16):1923–1939

    Article  Google Scholar 

  • Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–206

    Article  Google Scholar 

  • Sun KH, Kim YY (2010) Layout design optimization for magneto-electro-elastic laminate composites for maximized energy conversion under mechanical loading. Smart Mater Struct 19:055008

    Article  Google Scholar 

  • Tadesse Y, Zhang S, Priya S (2009) Multimodal energy harvesting system: piezoelectric and electromagnetic. J Intell Mater Syst Struct 20(5):625–623

    Article  Google Scholar 

  • Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phasefield method and sensitivity analysis. J Comput Phys 229(7):2697–2718

    Article  MATH  MathSciNet  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  Google Scholar 

  • Warren JA, Kobayashi R, Lobkovsky AE, Craig Carter W (2003) Extending phase field models of solidification to polycrystalline materials. Acta Mater 51(20):6035–6058

    Article  Google Scholar 

  • Zheng B, Chang CJ, Gea HC (2009) Topology optimization of energy harvesting devices using piezoelectric materials. Struct Multidiscip Optim 38(1):17–23

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The coc algorithm. II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25820422 and 25630436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Takezawa.

Appendix

Appendix

Appendix In this appendix, the detailed derivation of the sensitivity in (30) and the adjoint equations in (32)–(35) is outlined. The derivatives of the objective functions with respect to the density function are based on the procedure shown in Chapter 5 of Allaire (2007). The general objective function of piezoelectric problem is defined as \(J(\phi ) = \int j(\boldsymbol {u},V) dx\). The derivative of this function in the direction \(\theta \) is then

$$\begin{array}{@{}rcl@{}} \langle J'(\phi),\theta \rangle &=& \int j'(\boldsymbol{u})\langle \boldsymbol{u}'(\phi),\theta \rangle dx {}+{} \int j'(V)\langle V'(\phi),\theta \rangle dx \\ &=& \int j'(\boldsymbol{u})\boldsymbol{v} dx + \int j'(V)w dx \end{array} $$
(57)

where \(\boldsymbol {v}=\langle \boldsymbol {u}'(\phi ),\theta \rangle ,\ w = \langle V'(\phi ),\theta \rangle \). Setting adjoint states \(\boldsymbol {p}\) and q as test functions of the weak-form equations of state in (11)–(18), the Lagrangian is formulated as follows:

$$\begin{array}{@{}rcl@{}} &&{} L(\phi,\boldsymbol{u},V,\boldsymbol{p},q)\\ &&= \int j(\boldsymbol{u},V) dx - m(\boldsymbol{u},\boldsymbol{p}) + a(\boldsymbol{u},\boldsymbol{p}) - b(\boldsymbol{p}, V) \\ &&{\kern8pt} - L_{m}(\boldsymbol{p})+ b(\boldsymbol{u},q) + c(V,q) - L_{e}(q). \end{array} $$
(58)

Using this, the derivative of the objective function can be expressed as

$$\begin{array}{@{}rcl@{}} \left\langle j'(\phi),\theta \right\rangle&=& \left\langle \frac{\partial L}{\partial \phi}(\phi,\boldsymbol{u},V,\boldsymbol{p},q),\theta \right \rangle\\ &&+ \left\langle \frac{\partial L}{\partial \boldsymbol{u}}(\phi,\boldsymbol{u},V,\boldsymbol{p},q), \langle \boldsymbol{u}'(\phi),\theta \rangle \right \rangle\\ &&+ \left\langle \frac{\partial L}{\partial V}(\phi,\boldsymbol{u},V,\boldsymbol{p},q), \langle V'(\phi),\theta \rangle \right \rangle\\ &=& \left\langle \frac{\partial L}{\partial \phi}(\phi,\boldsymbol{u},V,\boldsymbol{p},q),\theta \right \rangle\\ &&+ \left\langle \frac{\partial L}{\partial \boldsymbol{u}}(\phi,\boldsymbol{u},V,\boldsymbol{p},q), \boldsymbol{v} \right \rangle\\ &&+ \left\langle \frac{\partial L}{\partial V}(\phi,\boldsymbol{u},V,\boldsymbol{p},q), w \right\rangle. \end{array} $$
(59)

Consider the case where the second and third terms are zero. These terms are calculated as follows:

$$\begin{array}{@{}rcl@{}} \left\langle \frac{\partial L}{\partial \boldsymbol{u}}, \boldsymbol{v} \right\rangle &=& \int j'(\boldsymbol{u})\boldsymbol{v} dx -m(\boldsymbol{v},\boldsymbol{p})\\ && + a(\boldsymbol{v},\boldsymbol{p}) + b(\boldsymbol{v},q) = 0, \end{array} $$
(60)
$$\begin{array}{@{}rcl@{}}\left\langle \frac{\partial L}{\partial V}, w \right\rangle &=& \int j'(V)w dx - b(p,w) \\ &&+ c(w,q) = 0. \end{array} $$
(61)

When the adjoint states \(\boldsymbol {p}\) and q satisfy the above adjoint equations, the second and third terms of (59) can be ignored. On the other hand, the derivatives of (11)–(18) with respect to \(\phi \) in the direction \(\theta \) are

$$\begin{array}{@{}rcl@{}} &&{}- m'(\boldsymbol{u},\boldsymbol{p}) - m(\boldsymbol{v},\boldsymbol{p}) + a'(\boldsymbol{u},\boldsymbol{p}) + a(\boldsymbol{v},\boldsymbol{p})\\ &&\,\,\,- b'(p,V) - b(p,w) = 0 \end{array} $$
(62)
$$b'(\boldsymbol{u},q) + b(\boldsymbol{p},q) + c'(V,q) + c(w,q) = 0 $$
(63)

where

$$ m'(\boldsymbol{u},\boldsymbol{p}) = {\omega_{\text{input}}}^{2}\int_{\Omega} \rho'(\phi) \boldsymbol{u}\boldsymbol{p} \theta dx $$
(64)
$$ a'(\boldsymbol{u},\boldsymbol{p}) = \int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{u})^{T}\boldsymbol{C}'(\phi)\boldsymbol{\varepsilon}(\boldsymbol{p})\theta dx $$
(65)
$$ b'(\boldsymbol{p},V) = \int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{p})^{T} \boldsymbol{e}_{s}'(\phi) \boldsymbol{E}(V) \theta dx $$
(66)
$$ c'(V,q) = \int_{\Omega} \boldsymbol{E}(V)^{T}\boldsymbol{\epsilon}'(\phi)\boldsymbol{E}(q)\theta dx. $$
(67)

Substituting (62) and (63) into (60) and (61) and combining them into one equation, the following equation is obtained:

$$\begin{array}{@{}rcl@{}} \int j'(\boldsymbol{u})\boldsymbol{v} dx + \int j'(V)w dx &=&- m'(\boldsymbol{u},\boldsymbol{p}) + a'(\boldsymbol{u},\boldsymbol{p}) \\ && - b'(p,V) + b'(\boldsymbol{u},q) \\ &&+ c'(V,q) \end{array} $$
(68)

Substituting (68) into (57) yields following equation:

$$\begin{array}{@{}rcl@{}} J'(\phi) &=& -{\omega_{\text{input}}}^{2} \rho'(\phi) \boldsymbol{u}\boldsymbol{p} + \boldsymbol{\varepsilon}(\boldsymbol{u})^{T}\boldsymbol{C}'(\phi)\boldsymbol{\varepsilon}(\boldsymbol{p})\\ &&- \boldsymbol{\varepsilon}(\boldsymbol{p})^{T} \boldsymbol{e}_{s}'(\phi) \boldsymbol{E}(V) + \boldsymbol{\varepsilon}(\boldsymbol{u})^{T} \boldsymbol{e}_{s}'(\phi) \boldsymbol{E}(q) \\ &&- \boldsymbol{E}(V)^{T}\boldsymbol{\epsilon}'(\phi)\boldsymbol{E}(q). \end{array} $$
(69)

Next, the adjoint equations are calculated from (60) and (61). When the electric energy \(c(V,V)\) is considered as the objective function, it is formulated as follows:

$$\begin{array}{@{}rcl@{}} J(\rho) &=& \int j (\boldsymbol{u},V) dx\\ &=& c(V,V). \end{array} $$
(70)

Thus,

$$ \int j'(\boldsymbol{u})v dx = 0 $$
(71)
$$ \int j'(V)w dx = 2c(V,w) $$
(72)

Substituting (71) and (72) into (60) and (61) respectively gives following equation

$$ m(\boldsymbol{v},\boldsymbol{p}) - a(\boldsymbol{v},\boldsymbol{p}) - b(\boldsymbol{v},q) = 0 $$
(73)
$$ b(p,w) + c(w,q) = 2c(V,w) $$
(74)

When the strain energy \(a(\boldsymbol {u},\boldsymbol {u})\) is considered as the objective function, it is formulated as follows:

$$\begin{array}{@{}rcl@{}} J(\rho) &=& \int j (\boldsymbol{u},V) dx\\ &=& a(\boldsymbol{u},\boldsymbol{u}) \end{array} $$
(75)

Thus,

$$ \int j'(\boldsymbol{u})\boldsymbol{v} dx = 2a(\boldsymbol{u},\boldsymbol{v}) $$
(76)
$$ \int j'(V)w dx = 0 $$
(77)

Substituting (76) and (77) into (60) and (61) respectively gives following equation

$$ 2a(\boldsymbol{u},\boldsymbol{v}) - m(\boldsymbol{p},\boldsymbol{v}) + a(\boldsymbol{p},\boldsymbol{v}) + b(\boldsymbol{v},q) = 0 $$
(78)
$$- b(\boldsymbol{p},w) + c(q,w) = 0. $$
(79)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takezawa, A., Kitamura, M., Vatanabe, S. et al. Design methodology of piezoelectric energy-harvesting skin using topology optimization. Struct Multidisc Optim 49, 281–297 (2014). https://doi.org/10.1007/s00158-013-0974-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0974-x

Keywords

Navigation