Skip to main content
Log in

On topology optimization of damping layer in shell structures under harmonic excitations

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper investigates the optimal distribution of damping material in vibrating structures subject to harmonic excitations by using topology optimization method. Therein, the design objective is to minimize the structural vibration level at specified positions by distributing a given amount of damping material. An artificial damping material model that has a similar form as in the SIMP approach is suggested and the relative densities of the damping material are taken as design variables. The vibration equation of the structure has a non-proportional damping matrix. A system reduction procedure is first performed by using the eigenmodes of the undamped system. The complex mode superposition method in the state space, which can deal with the non-proportional damping, is then employed to calculate the steady-state response of the vibrating structure. In this context, an adjoint variable scheme for the response sensitivity analysis is developed. Numerical examples are presented for illustrating validity and efficiency of this approach. Impacts of the excitation frequency as well as the damping coefficients on topology optimization results are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004). Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Alvelid M (2008) Optimal position and shape of applied damping material. J Sound Vib 310:947–965

    Article  Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice Hall, New Jersey

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Caughey TK, O’Kelly MEJ (1965) Classical normal modes in damped linear dynamic systems. J Appl Mech 32:583–588

    Article  MathSciNet  Google Scholar 

  • Cheng GD, Kang Z, Wang G (1997) Dynamic optimization of a turbine foundation. Struct Optim 13(4):244–249

    Article  Google Scholar 

  • Chia CM, Rongong JA, Woeden K (2009) Strategies for using cellular automata to locate constrained layer damping on vibrating structures. J Sound Vib 319:119–139

    Article  Google Scholar 

  • Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2007a) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidisc Optim 33:305–321

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2007b) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and eigenfrequency gaps. Struct Multidisc Optim 34:91–110

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2010) Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium. Struct Multidisc Optim 42:43–54

    Article  MathSciNet  Google Scholar 

  • Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317:557–575

    Article  Google Scholar 

  • Igusa T, Kiureghian AD, L.Sackmans JL (1984) Modal decomposition method for stationary response of non-classically damped systems. Earthq Eng Struct Dyn 12:121–136

    Article  Google Scholar 

  • Guyan RJ (1964) Reduction of stiffness and mass matrices. AIAA J 3(2):380

    Google Scholar 

  • Jensen JS (2007) Topology optimization of dynamics problems with Padé approximants. Int J Numer Methods Eng 72:1605–163

    Article  MATH  Google Scholar 

  • Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289:967–986

    Article  Google Scholar 

  • Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B, Opt Phys 22(2):1191–1198

    Article  Google Scholar 

  • Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253(1):687–709

    Article  Google Scholar 

  • Khoza D (2006) Topology optimization of plate-like structures. Master of Engineering thesis, Department of Mechanical and Aeronautical Engineering, University of Pretoria

  • Luo J, Gea HC (2003) Optimal stiffener design for interior sound reduction using a topology optimization based approach. J Vib Acoust 125:267–273

    Article  Google Scholar 

  • Larsen AA, Laksafoss B, Jensen JS, Sigmund O (2009) Topological material layout in plates for vibration suppression and wave propagation control. Struct Multidisc Optim 37:585–594

    Article  MathSciNet  Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280

    Article  MathSciNet  MATH  Google Scholar 

  • Meirovitch L (2001) Fundamentals of vibrations. McGraw-Hill, New York

    Google Scholar 

  • Min S, Kikuchi N, Park YC, Kim S, Chang S (1999) Optimal topology design of structures under dynamic loads. Struct Optim 17:208–218

    Google Scholar 

  • Mohammed A (2004) Homogenization and structural topology optimization of constrained layer damping treatments. Ph.D. dissertation, University of Maryland

  • Niu B, Olhoff N, Lund K, Cheng GD (2010) Discrete material optimization of vibrating laminated composite plates for minimum sound radiation. Int J Solids Struct 47:2097–2114

    Article  MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20:2–11

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mechan Struct Mach 25:495–526

    Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127

    Article  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band gap materials and structures by topology optimization. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci 361:1001–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54:1605–1622

    Article  MATH  Google Scholar 

  • Veletsos AS, Venturas CE (1986) Modal analysis of non-classically damped linear systems. Earthq Eng Struct Dyn 14:217–243

    Article  Google Scholar 

  • Wadbro E, Berggren M (2006) Topology optimization of an acoustic horn. Comput Methods Appl Mech Eng 196:420–436

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896

    Article  Google Scholar 

  • Yoon GH (2010a) Maximizing the fundamental eigenfrequency of geometrically nonlinear structures using the element connectivity based topology optimization. Comput Struct 88:120–133

    Article  Google Scholar 

  • Yoon GH (2010b) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199:1744–1763

    Article  MATH  Google Scholar 

  • Yoon GH, Jensen JS, Sigmund O (2007) Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation. Int J Numer Methods Eng 70:1049–1075

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng L, Xie RL, Wang Y, El-Sabbagh A (2011) Topology optimization of constrained layer damping on plates using Method of Moving Asymptote (MMA) approach. Shock Vib 18:221–244

    Google Scholar 

  • Zheng H, Cai C, Pau GSH, Liu GR (2005) Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J Sound Vib 279:739–756

    Article  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89:197–224

    Article  Google Scholar 

Download references

Acknowledgments

The support from the Natural Science Foundation of China (Grant 90816025, 11072047), the Major Project of Chinese National Programs for Fundamental Research and Development (Grant 2010CB832703) and National High-tech R&D Program of China (Grant 2009AA044501) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Z., Zhang, X., Jiang, S. et al. On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidisc Optim 46, 51–67 (2012). https://doi.org/10.1007/s00158-011-0746-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0746-4

Keywords

Navigation