Skip to main content
Log in

Topology optimization involving thermo-elastic stress loads

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Structural topology optimization of thermo-elastic problems is investigated in this paper. The key issues about the penalty models of the element stiffness and thermal stress load of the finite element model are highlighted. The penalization of thermal stress coefficient (TSC) measured by the product between thermal expansion coefficient and Young’s modulus is proposed for the first time to characterize the dependence of the thermal stress load upon the design variables defined by element pseudo-densities. In such a way, the element stiffness and the thermal stress load can be penalized independently in terms of element pseudo-density. This formulation demonstrates especially its capability of solving problems with multiphase materials. Besides, the comparison study shows that the interpolation model RAMP is more advantageous than the SIMP in our case. Furthermore, sensitivity analysis of the structural mean compliance is developed in the case of steady-state heat conduction. Numerical examples of two-phase and three-phase materials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Ansola R, Canales J, Tárrago AJ (2006) An efficient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads. Finite Elem Anal Des 42:1220–1230

    Article  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, London

    Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidisc Optim 29:245–256

    Article  Google Scholar 

  • Chen BC, Kikuchi N (2001) Topology optimisation with design dependent loads. Finite Elem Anal Des 39:57–70

    Article  Google Scholar 

  • Cho S, Choi JY (2005) Efficient topology optimization of thermo-elasticity problems using coupled field adjoint sensitivity analysis method. Finite Elem Anal Des 41:1481–1495

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2003a) Topological optimization of continuum structures with design-dependent surface loading—part I: new computational approach for 2D problems. Struct Multidisc Optim 27:166–177

    Article  MathSciNet  Google Scholar 

  • Du J, Olhoff N (2003b) Topological optimization of continuum structures with design-dependent surface loading—part II: algorithm and examples for 3D problems. Struct Multidisc Optim 27:151–165

    Article  MathSciNet  Google Scholar 

  • Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428

    Article  MATH  MathSciNet  Google Scholar 

  • Fuchs MB, Moses E (2000) Optimal structural topologies with transmissible loads. Struct Multidisc Optim 19:263–273

    Article  Google Scholar 

  • Fuchs MB, Shemesh NNY (2004) Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct Multidisc Optim 28:11–19

    Article  Google Scholar 

  • Gao T, Zhang WH (2009a) Structural topology optimization under inertial loads. Chinese Journal of Theoretical Applied Mechanics 41(4):530–541 (in Chinese)

    Google Scholar 

  • Gao T, Zhang WH (2009b) Topology optimization of multiphase-material structures under design-dependent pressure loads. Int J Simul Multidisci Des Optim 3(1):297–306

    Google Scholar 

  • Gao T, Zhang WH, Zhu JH, Xu YJ, Bassir DH (2008) Topology optimization of heat conduction problem involving design dependent heat load effect. Finite Elem Anal Des 44:805–813

    Article  Google Scholar 

  • Hammer VB, Olhoff N (2000) Topology optimisation of continuum structures subjected to pressure loading. Struct Multidisc Optim 19:85–92

    Article  Google Scholar 

  • Li Q, Steven GP, Xie YM (1999) Displacement minimization of themoelastic structures by evolutionary thickness design. Comput Methods Appl Mech Eng 179:361–378

    Article  MATH  Google Scholar 

  • Liu Z, Korvink JG, Huang R (2005) Structure topology optimization: fully coupled level set method via FEMLAB. Struct Multidisc Optim 29(6):407–417

    Article  MathSciNet  Google Scholar 

  • Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38:1951–1965

    Article  MATH  MathSciNet  Google Scholar 

  • Rozvany GIN (2010) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37:217–237

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN, Prager W (1979) A new class of structural optimisation problems: optimal arch grids. Comput Methods Appl Mech Eng 19:49–58

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN, Zhou M (1991) Applications of the COC algorithm in layout optimization. In: Eschenauer H, Matteck C, Olhoff N (eds) Engineering optimization in design processes. Proc. int. conf. held in Karlsruhe, Germany, Sept. 1990. Springer, Berlin, pp 59–70

    Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Article  Google Scholar 

  • Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196:1874–1889

    Article  MATH  MathSciNet  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22:116–124

    Article  Google Scholar 

  • Sun SP, Zhang WH (2009) Topology optimal design of thermo-elastic structures. Chinese Journal of Theoretical Applied Mechanics 41(6):878–887 (in Chinese)

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Proc. first world congress of structural and multidisciplinary optimization. Pergamon, Oxford, pp 9–16

    Google Scholar 

  • Yang XY, Xie YM, Steven GP (2005) Evolutionary methods for topology optimization of continuous structures with design dependent loads. Comput Struct 83:956–963

    Article  Google Scholar 

  • Zhang WH, Fleury C (1997) A modification of convex approximation methods for structural optimization. Comput Struct 64:89–95

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336

    Article  Google Scholar 

  • Zuo KT, Qian Q, Zhao YD, Chen LP (2005) Research on the topology optimization about thermo-structural coupling field. Acta Mech Solida Sinica 26:447–452 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Fund for Distinguished Young Scholars (10925212), the National Natural Science Foundation of China (50775184, 90916027) and the Aeronautical Science Foundation (2008ZA53007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, T., Zhang, W. Topology optimization involving thermo-elastic stress loads. Struct Multidisc Optim 42, 725–738 (2010). https://doi.org/10.1007/s00158-010-0527-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-010-0527-5

Keywords

Navigation