Skip to main content
Log in

A topological derivative method for topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We propose a fictitious domain method for topology optimization in which a level set of the topological derivative field for the cost function identifies the boundary of the optimal design. We describe a fixed-point iteration scheme that implements this optimality criterion subject to a volumetric resource constraint. A smooth and consistent projection of the region bounded by the level set onto the fictitious analysis domain simplifies the response analysis and enhances the convergence of the optimization algorithm. Moreover, the projection supports the reintroduction of solid material in void regions, a critical requirement for robust topology optimization. We present several numerical examples that demonstrate compliance minimization of fixed-volume, linearly elastic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader A (2002) A level-set method for shape optimization. C R Math Acad Sci 334(12):1125–1130

    MATH  MathSciNet  Google Scholar 

  • Allaire G, de Gournay F, Jouve F, Toader A (2004a) Structural optimization using topological and shape sensitivity via a level set method. Internal report 555, Ecole Polytechnique

  • Allaire G, Jouve F, Toader A (2004b) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Xiao S, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57:1177–1196

    Article  MATH  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Haber RB (1993) The michell layout problem as a low volume fraction limit of the perforated plate topology optimization problem: An asymptotic study. Struct Optim 6:263–267

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization. Springer, Berlin Heidelberg New York theory, methods and applications

    Google Scholar 

  • Bloomenthal J (1988) Polygonization of implicit surfaces. Comput Aided Geom Des 5(4):341–355

    Article  MATH  MathSciNet  Google Scholar 

  • Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188:713–726

    Article  MATH  Google Scholar 

  • Eschenauer HA, Kobelev V, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8:42–51

    Article  Google Scholar 

  • Garreau S, Guillaume P, Masmoudi M (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J Control Optim 39(6):1756–1778 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11:1–12

    Article  Google Scholar 

  • Kohn R, Strang G (1986) Optimal design and relaxation of variational problems. Commun Pure Appl Math 39(1):1–25 (part I), 139–182 (part II), and 353–357 (part III)

    MathSciNet  Google Scholar 

  • Mei Y, Wang X (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35:415–441

    Article  MATH  Google Scholar 

  • Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60(14):2289–2312

    Article  MATH  Google Scholar 

  • Olhoff N, Bendsøe MP, Rasmussen J (1991) On CAD-integrated strutural topology and design optimization. Comput Methods Appl Mech Eng 89(1–3):259–279

    Article  Google Scholar 

  • Pedersen P (1989) On optimal orientation of orthotropic materials. Struct Optim 1(2):101–106

    Article  Google Scholar 

  • Pedersen P (1990) Bounds on elastic energy in solids of orthotopic materials. Struct Optim 35(1):55–63

    Article  Google Scholar 

  • Pedersen P (1998) Some general optimal design results using anisotropic, power law nonlinear elasticity. Struct Optim 15(2):73–80

    Article  Google Scholar 

  • Pedersen P (2003a) A note on design of fiber-nets for maximum stiffness. J Elast 73(1):127–145

    Article  MATH  Google Scholar 

  • Pedersen P (2003b) Optimal designs—structures and materials—problems and tools. http://www.fam.web.mek.dtu.dk/pp.html

  • Pedersen P, Pedersen N (2005) An optimality criterion for shape optimization in eigenfrequency problems. Struct Multidiscipl Optim 29(6):457–469

    Article  Google Scholar 

  • Rozvany G (2000) Basic geometrical properties of exact optimal composite plates. Comput Struct 76(1–3):263–275

    Article  Google Scholar 

  • Rozvany G, Zhou M (1991) Applications of the coc method in layout optimization. Comput Struct 76(1–3):263–275

    Google Scholar 

  • Sokołowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272 (electronic)

    Article  MathSciNet  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou M, Rozvany G (2001) On the validity of eso type methods in topology optimization. Struct Optim 21:80–83

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Haber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norato, J.A., Bendsøe, M.P., Haber, R.B. et al. A topological derivative method for topology optimization. Struct Multidisc Optim 33, 375–386 (2007). https://doi.org/10.1007/s00158-007-0094-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0094-6

Keywords

Navigation