Skip to main content
Log in

Positive primitive formulae of modules over rings of semi-algebraic functions on a curve

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Let R be a real closed field, and \({X\subseteq R^m}\) semi-algebraic and 1-dimensional. We consider complete first-order theories of modules over the ring of continuous semi-algebraic functions \({X\to R}\) definable with parameters in R. As a tool we introduce (pre)-piecewise vector bundles on X and show that the category of piecewise vector bundles on X is equivalent to the category of syzygies of finitely generated submodules of free modules. We give an explicit method to determine the Baur–Monk invariants of free modules in terms of pre-piecewise vector bundles. When R is a recursive real closed field this yields the decidability of the theory of free modules. Where it makes sense, we address the same questions for continuous definable functions in o-minimal expansions of a real closed field. From the free module case we are able to deduce generalisations of some results to arbitrary modules over the ring. We present a geometrically motivated quantifier elimination result down to the level of positive primitive formulae with a certain block decomposition of the matrix of coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baur W.: Elimination of quantifiers for modules. Isr. J. Math. 25, 64–70 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochnak J., Coste M., Roy M.-F.: Real Algebraic Geometry. A Series of Moden Surveys in Mathematics, vol. 36. Springer, Berlin (1998)

    Google Scholar 

  3. Cherlin, G.: Rings of continuous functions: decision problems. In: Model Theory of Algebra and Arithmetic. Lecture Notes in Mathematics, vol. 834, pp. 44–91. Springer, Berlin (1980)

  4. Cherlin G., Dickmann M.A.: Real closed rings II model theory. Ann. Pure Appl. Log. 25(3), 213–231 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garavaglia S.: Direct product decomposition of theories of modules. J. Symb. Log. 44(3), 77–88 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grzegorczyk A.: On the undecidability of some topological theories. Fundam. Math. 38, 137–152 (1951)

    MathSciNet  Google Scholar 

  7. Guier J.I.: Boolean products of real closed valuation rings and fields. Ann. Pure Appl. Log. 112(2–3), 119–150 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hodges W.: Model Theory. Encyclopaedia of Mathematics and its Applications, vol. 43. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  9. Knight J., Pillay A., Steinhorn C.: Definable sets in ordered structures II. Trans. Am. Math. Soc. 295(2), 593–605 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mac Lane S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 2nd edn. Springer, New York (1998)

    Google Scholar 

  11. Macintyre A.: On the elementary theory of banach algebras. Ann. Math. Log. 3, 239–269 (1971)

    Article  MathSciNet  Google Scholar 

  12. Monk, L.G.: Elementary-recursive decision procedures. PhD thesis, University of California, Berkeley (1975)

  13. Pillay A., Steinhorn C.: Definable sets in ordered structures I. Trans. Am. Math. Soc. 295(2), 565–592 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pillay A., Steinhorn C.: Definable sets in ordered structures III. Trans. Am. Math. Soc. 309(2), 469–476 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Prest M.: Purity, Spectra, and Localisation. Encyclopaedia of Mathematics and its Applications, vol. 121. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  16. Schwartz, N.: The Basic Theory of Real Closed Spaces. vol. 77(397). Memoirs of the American Mathematical Society, Providence, Rhode Island, USA (1989)

  17. Swan R.: Vector bundles and projective modules. Trans. Am. Math. Soc. 105(3), 264–277 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tressl M.: Super real closed rings. Fundam. Math. 194, 121–177 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. van den Dries, L.: Tame Topology and O-minimal Structures. Cambridge University Press, Cambridge (1998)

  20. van den Dries, L., Lewenberg, A.H.: T-convexity and tame extensions. J. Symb. Log. 60(1), 14–34 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura R. Phillips.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phillips, L.R. Positive primitive formulae of modules over rings of semi-algebraic functions on a curve. Arch. Math. Logic 54, 587–614 (2015). https://doi.org/10.1007/s00153-015-0429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-015-0429-8

Keywords

Mathematics Subject Classification

Navigation