Skip to main content
Log in

Real closures of models of weak arithmetic

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

D’Aquino et al. (J Symb Log 75(1):1–11, 2010) have recently shown that every real-closed field with an integer part satisfying the arithmetic theory IΣ4 is recursively saturated, and that this theorem fails if IΣ4 is replaced by IΔ0. We prove that the theorem holds if IΣ4 is replaced by weak subtheories of Buss’ bounded arithmetic: PV or \({\Sigma^b_1-IND^{|x|_k}}\). It also holds for IΔ0 (and even its subtheory IE 2) under a rather mild assumption on cofinality. On the other hand, it fails for the extension of IOpen by an axiom expressing the Bézout property, even under the same assumption on cofinality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boughattas S., Kołodziejczyk L.A.: The strength of sharply bounded induction requires MSP. Ann. Pure Appl. Log. 161(4), 504–510 (2010)

    Article  MATH  Google Scholar 

  2. Berarducci A., Otero M.: A recursive nonstandard model of normal open induction. J. Symb. Log. 61(4), 1228–1241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in real algebraic geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2006)

  4. Boughattas S., Ressayre J.-P.: Bootstrapping, part I. Ann. Pure Appl. Log. 161(4), 511–533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barwise J., Schlipf J.: An introduction to recursively saturated and resplendent models. J. Symb. Log. 41(2), 531–536 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buss, S.R.: Bounded arithmetic. Revision of 1985 Princeton University Ph.D. thesis, Bibliopolis, Naples (1986)

  7. Carl, M., D’Aquino, P., Kuhlmann, S.: Real closed exponential fields and models of Peano arithmetic. arXiv:1205.2254 [math.LO] (2012) (Preprint)

  8. Cegielski, P., McAloon, K., Wilmers, G.: Modèles récursivement saturés de l’addition et de la multiplication des entiers naturels, In: van Dalen, D., et al. (eds.) Logic Colloquium ’80, Studies in Logic and the Foundations of Mathematics, vol. 108, pp. 57–68. North-Holland (1982)

  9. Cook S.A., Nguyen P.: Logical Foundations of Proof Complexity. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  10. D’Aquino P., Knight J.F., Starchenko S.: Real closed fields and models of Peano arithmetic. J. Symb. Log. 75(1), 1–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Aquino P., Knight J.F., Starchenko S.: Corrigendum to: Real closed fields and models of arithmetic. J. Symb. Log. 77(2), 726 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic, 2nd edn. Perspectives in Mathematical Logic, Springer, Berlin (1998)

  13. Kaye, R.: Open induction, Tennenbaum phenomena, and complexity theory. In: Clote, P., Krajíček, J. (eds.) Arithmetic, Proof Theory, and Computational Complexity, pp. 222–237. Oxford University Press, Oxford (1993)

  14. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

  15. Marker, D.: Model Theory: An Introduction. Springer, Berlin (2002)

  16. McAloon K.: On the complexity of models of arithmetic. J. Symb. Log. 47(2), 403–415 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Macintyre A., Marker D.: Primes and their residue rings in models of open induction. Ann. Pure Appl. Log. 43(1), 57–77 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mohsenipour, S.: A recursive nonstandard model for open induction with GCD property and confinal primes. In: Enayat, A., et al.(eds.) Logic in Tehran, Lecture Notes in Logic, no. 26, Association for Symbolic Logic, pp. 227–238 (2006)

  19. Mourgues M.-H., Ressayre J.-P.: Every real closed field has an integer part. J. Symb. Log. 58(2), 641–647 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marker, D., Steinhorn, C.: Uncountable real closed fields with PA integer parts. arXiv:1205.5156 [math.LO] (2012) (Preprint)

  21. Paris J.B.: O struktuře modelů omezené E 1-indukce. Časopis pro pěstování 109(4), 372–379 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Shepherdson J.C.: A non-standard model for a free variable fragment of number theory. Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 12(2), 79–86 (1964)

    MathSciNet  MATH  Google Scholar 

  23. Smith S.T.: Building discretely ordered Bezout domains and GCD domains. J. Algebra 159(1), 191–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tennenbaum, S.: Non-archimedean models for arithmetic. Not. Am. Math. Soc. 6, 270 (1959)

    Google Scholar 

  25. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

  26. Wilkie, A.J.: Some results and problems on weak systems of arithmetic. In: Macintyre, A., et al. (eds.) Logic Colloquium ’77, Studies in Logic and the Foundations of Mathematics, vol. 96, pp. 285–296. North-Holland, (1978)

  27. Wilmers G.: Bounded existential induction. J. Symb. Log. 50(1), 72–90 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Jeřábek.

Additional information

Emil Jeřábek supported by RVO: 67985840, grant IAA100190902 of GA AV ČR, project 1M0545 of MŠMT ČR, and a grant from the John Templeton Foundation.

Leszek Aleksander Koł odziejczyk partially supported by grant N N201 382234 of the Polish Ministry of Science and Higher Education.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeřábek, E., Kołodziejczyk, L.A. Real closures of models of weak arithmetic. Arch. Math. Logic 52, 143–157 (2013). https://doi.org/10.1007/s00153-012-0311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0311-x

Keywords

Mathematics Subject Classification

Navigation