Skip to main content
Log in

Rings of algebraic numbers in infinite extensions of \({\mathbb {Q}}\) and elliptic curves retaining their rank

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We show that elliptic curves whose Mordell–Weil groups are finitely generated over some infinite extensions of \({\mathbb {Q}}\) , can be used to show the Diophantine undecidability of the rings of integers and bigger rings contained in some infinite extensions of rational numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cornelissen G., Pheidas T., Zahidi K.: Division-ample sets and diophantine problem for rings of integers. Journal de Théorie des Nombres Bordeaux 17, 727–735 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Davis M.: Hilbert’s tenth problem is unsolvable. Am. Math. Mon. 80, 233–269 (1973)

    Article  MATH  Google Scholar 

  3. Davis, M., Matiyasevich, Y., Robinson, J.: Hilbert’s tenth problem. Diophantine equations: positive aspects of a negative solution. In Proc. Sympos. Pure Math., vol. 8, pp. 23– 378. American Mathematical Society, Providence, RI (1976)

  4. Denef J.: Hilbert’s tenth problem for quadratic rings. Proc. Am. Math. Soc. 48, 214–220 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Denef J.: Diophantine sets of algebraic integers, II. Trans. Am. Math. Soc. 257(1), 227–236 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Denef J., Lipshitz L.: Diophantine sets over some rings of algebraic integers. J. London Math. Soc. 18(2), 385–391 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lang S.: Algebraic Number Theory. Addison Wesley, Reading, MA (1970)

    MATH  Google Scholar 

  8. Matiyasevich, Y.V.: Hilbert’s tenth problem. Foundations of Computing Series. MIT Press, Cambridge, MA, 1993. Translated from the 1993 Russian original by the author, With a foreword by Martin Davis (1993)

  9. Mazur B.: The topology of rational points. Exp. Math. 1(1), 35–45 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Mazur B.: Questions of decidability and undecidability in number theory. J. Symb. Logic 59(2), 353–371 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mazur B.: Speculation about the topology of rational points: an up-date. Asterisque 228, 165–181 (1995)

    MathSciNet  Google Scholar 

  12. Mazur B.: Open problems regarding rational points on curves and varieties. In: Scholl, A.J., Taylor, R.L. (eds) Galois Representations in Arithmetic Algebraic Geometry, Cambridge University Press, London (1998)

    Google Scholar 

  13. Mazur, B., Rubin, K.: Elliptic curves and class field theory. In: Proceedings of the International Congress of Mathematicians, vol. II (Beijing, 2002), pp. 185–195, Beijing, 2002. Higher Ed. Press

  14. Pheidas T.: Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Am. Math. Soc. 104(2), 611–620 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Poonen, B.: Elliptic curves whose rank does not grow and Hilbert’s Tenth Problem over the rings of integers (private Communication)

  16. Poonen B.: Using elliptic curves of rank one towards the undecidability of Hilbert’s Tenth Problem over rings of algebraic integers. In: Fieker, C., Kohel, D. (eds) Algorithmic Number Theory. Lecture Notes in Computer Science, vol. 2369, pp. 33–42. Springer, Berlin (2002)

    Chapter  Google Scholar 

  17. Poonen B.: Hilbert’s Tenth Problem and Mazur’s conjecture for large subrings of \({\mathbb {Q}}\) . J. AMS 16(4), 981–990 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Poonen B., Shlapentokh A.: Diophantine definability of infinite discrete non-archimedean sets and diophantine models for large subrings of number fields. Journal für die Reine und Angewandte Mathematik 2005, 27–48 (2005)

    Article  MathSciNet  Google Scholar 

  19. Schmid W.A.: On the set of integral solutions of the Pell equation in number fields. Aequationes Math. 71(1–2), 109–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shapiro, H., Shlapentokh, A.: Diophantine relations between algebraic number fields. Commun. Pure Appl. Math. XLII, 1113–1122 (1989)

    Google Scholar 

  21. Shastri P.: Integral points on the unit circle. J. Number Theory 91(1), 67–70 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shlapentokh, A.: Elliptic curves retaining their rank in finite extensions and Hilbert’s tenth problem. Trans. AMS (to appear)

  23. Shlapentokh, A.: Extension of Hilbert’s tenth problem to some algebraic number fields. Commun. Pure Appl. Math. XLII, 939–962 (1989)

    Google Scholar 

  24. Shlapentokh A.: Diophantine classes of holomorphy rings of global fields. J. Algebra 169(1), 139–175 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shlapentokh A.: Diophantine undecidability in some rings of algebraic numbers of totally real infinite extensions of \({matbb {Q}}\). Ann. Pure Appl. Logic 68, 299–325 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shlapentokh A.: Diophantine definability over some rings of algebraic numbers with infinite number of primes allowed in the denominator. Inventiones Mathematicae 129, 489–507 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shlapentokh A.: Defining integrality at prime sets of high density in number fields. Duke Math. J. 101(1), 117–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shlapentokh A.: Hilbert’s tenth problem over number fields, a survey. In: Denef, J., Lipshitz, L., Pheidas, T., Geel, J.V. (eds) Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary Mathematics, vol. 270, pp. 107–137. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  29. Shlapentokh A.: On diophantine definability and decidability in large subrings of totally real number fields and their totally complex extensions of degree 2. J. Number Theory 95, 227–252 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Shlapentokh A.: A ring version of Mazur’s conjecture on topology of rational points. Int. Math. Res. Notices 7, 411–423 (2003)

    Article  MathSciNet  Google Scholar 

  31. Shlapentokh A.: On diophantine definability and decidability in some infinite totally real extensions of \({\mathbb {Q}}\) . Trans. AMS 356(8), 3189–3207 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shlapentokh A.: Hilbert’s Tenth Problem: Diophantine Classes and Extensions to Global Fields. Cambridge University Press, London (2006)

    Google Scholar 

  33. Shlapentokh A.: Diophantine definability and decidability in the extensions of degree 2 of totally real fields. J. Algebra 313(2), 846–896 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Silverman, J.: On the independence of Heegner points associated to distinct quadratic imaginary fields. arXiv:math.NT/0508259 v2 15 Aug 2005

  35. Silverman J.: The Arithmetic of Elliptic Curves. Springer, New York, NY (1986)

    MATH  Google Scholar 

  36. Washington, L.C.: Introduction to cyclotomic fields. Graduate Texts in Mathematics, vol. 83. Springer, New York (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Shlapentokh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlapentokh, A. Rings of algebraic numbers in infinite extensions of \({\mathbb {Q}}\) and elliptic curves retaining their rank. Arch. Math. Logic 48, 77–114 (2009). https://doi.org/10.1007/s00153-008-0118-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-008-0118-y

Keywords

Mathematics Subject Classification (2000)

Navigation