Skip to main content
Log in

Normal forms for fuzzy logics: a proof-theoretic approach

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A method is described for obtaining conjunctive normal forms for logics using Gentzen-style rules possessing a special kind of strong invertibility. This method is then applied to a number of prominent fuzzy logics using hypersequent rules adapted from calculi defined in the literature. In particular, a normal form with simple McNaughton functions as literals is generated for łukasiewicz logic, and normal forms with simple implicational formulas as literals are obtained for Gödel logic, Product logic, and Cancellative hoop logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguzzoli, S.: Geometric and proof-theoretic issues in úukasiewicz propositional logics. Ph.D. Thesis, University of Siena, Siena (1998)

  2. Avron A. (1987). A constructive analysis of RM. J. Symb. Logic 52(4): 939–951

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron A. and Konikowska B. (2001). Decomposition proof systems for Gödel–Dummett logics. Studia Logica 69(2): 197–219

    Article  MATH  MathSciNet  Google Scholar 

  4. Baaz, M., Fermüller, C.G.: Analytic calculi for projective logics. In: Murray, N. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX’99, Lecture Notes in Computer Science, vol. 1617, pp. 36–50. Springer, Saratoga Springs (1999)

  5. Baaz M. and Veith H. (1999). Interpolation in fuzzy logic. Arch. Math. Logic 38(7): 461–489

    Article  MATH  MathSciNet  Google Scholar 

  6. Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic foundations of many-valued reasoning. Trends in Logic, vol. 7. Kluwer, Dordercht (1999)

  7. Cintula P. and Gerla B. (2004). Semi-normal forms and functional representation of product fuzzy logic. Fuzzy Sets Syst. 143(1): 89–110

    Article  MATH  MathSciNet  Google Scholar 

  8. Dershowitz N. and Manna Z. (1979). Proving termination with multiset orderings. Commun. Assoc. Comput. Mach. 22(8): 465–476

    MATH  MathSciNet  Google Scholar 

  9. Di Nola A. and Lettieri A. (2004). On normal forms in Łukasiewicz logic. Arch. Math. Logic 43(6): 795–823

    Article  MATH  MathSciNet  Google Scholar 

  10. Hájek, P.: Metamathematics of fuzzy logic. Trends in Logic, vol.~4. Kluwer, Dordercht (1998)

  11. Hájek P., Godo L., Esteva F. and Montagna F. (2003). Hoops and fuzzy logic. J. Logic Comput. 13(4): 532–555

    Article  Google Scholar 

  12. McNaughton R. (1951). A theorem about infinite-valued sentential logic. J. Symb. Logic 16(1): 1–13

    Article  MATH  MathSciNet  Google Scholar 

  13. Metcalfe G., Olivetti N. and Gabbay D. (2004). Analytic proof calculi for product logics. Arch. Math. Logic 43(7): 859–889

    Article  MATH  MathSciNet  Google Scholar 

  14. Metcalfe G., Olivetti N. and Gabbay D. (2005). Sequent and hypersequent calculi for Abelian and Łukasiewicz logics. ACM Trans. Comput. Logic 6(3): 578–613

    Article  MathSciNet  Google Scholar 

  15. Mundici D. (1994). A constructive proof of McNaughton’s Theorem in infinite-valued logics. J. Symb. Logic 59(2): 596–602

    Article  MATH  MathSciNet  Google Scholar 

  16. Novák V., Perfilieva I. and Močkoř J. (2000). Mathematical Principles of Fuzzy Logic. Kluwer, Dordrecht

    Google Scholar 

  17. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press, Amsterdam (2001)

  18. Rose A. and Rosser J. (1958). Fragments of many-valued statement calculi. Trans. Ame. Math. Soc. 87: 1–53

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Cintula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cintula, P., Metcalfe, G. Normal forms for fuzzy logics: a proof-theoretic approach. Arch. Math. Logic 46, 347–363 (2007). https://doi.org/10.1007/s00153-007-0033-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-007-0033-7

Keywords

Mathematics Subject Classification (2000)

Navigation