Skip to main content
Log in

Computational complexity of logical theories of one successor and another unary function

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The first-order logical theory Th\(({\mathbb{N}},x + 1,F(x))\) is proved to be complete for the class ATIME-ALT\((2^{O(n)},O(n))\) when \(F(x) = 2^{x}\), and the same result holds for \(F(x) = c^{x}, x^{c} (c \in {\mathbb{N}}, c \ge 2)\), and F(x) =  tower of x powers of two. The difficult part is the upper bound, which is obtained by using a bounded Ehrenfeucht–Fraïssé game.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balcázar J.L., Díaz J., Gabarró J. (1990). Structural Complexity II. Springer, Berlin

    MATH  Google Scholar 

  2. Berman L. (1980). The complexity of logical theories. Theoret. Comput. Sci. 11: 71–77

    Article  MathSciNet  Google Scholar 

  3. Compton, K.J., Henson, C.W.: A uniform method for proving lower bounds on the computational complexity of logical theories. Ann. Pure Appl. Logic 48, 1–79 (1990) [Updated version in: Abramsky, S. et al. (eds.) Handbook of Logic and Computer Science, Vol. 5: Logic and Algebraic Methods, pp. 129–216. Oxford University Press, Oxford (2000)]

  4. Ehrenfeucht A. (1961). An application of games to the completeness problem for formalized theories. Fundam. Math. 49: 129–141

    MathSciNet  Google Scholar 

  5. Elgot C.C., Rabin M.O. (1966). Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. J. Symb. Logic 31: 169–181

    Article  Google Scholar 

  6. Ferrante J., Rackoff C.W. (1979). The computational complexity of logical theories, Lecture Notes in Mathematics, vol. 718. Springer, Berlin

    Google Scholar 

  7. Fraïssé R. (1954). Sur quelques classifications des systèmes de relations. Université d’Alger, Publications Scientifiques, Séries A, 1: 35–182

    Google Scholar 

  8. Gaifman, H.: On local and nonlocal properties. In: Stern, J. (ed.) Logic Colloquium’81, pp. 105–135. North Holland, Amsterdam (1982)

  9. Hua C.J. (1994). A new solution of the Diophantine equation X 2 +  1 =  2Y 4. J. Number Theory 48: 62–74

    Article  MathSciNet  Google Scholar 

  10. Korec I. (2001). A list of arithmetical structures complete with respect to the first-order definability. Theoret. Comput. Sci. 257: 115–151

    Article  MathSciNet  Google Scholar 

  11. Ljunggren : Zur Theorie der Gleichung X 2 +  1 =  DY 4. Avh. Nordske Vid. Akad. Oslo 1, No. 5 (1942)

  12. Lo L. (1988). On the computational complexity of the theory of abelian groups. Ann. Pure Appl. Logic 37: 205–248

    Article  MathSciNet  Google Scholar 

  13. Michel P. (1992). Complexity of logical theories involving coprimality. Theoret. Comput. Sci. 106: 221–241

    Article  MathSciNet  Google Scholar 

  14. Semenov, A.L.: Logical theories of one-place functions on the set of natural numbers. Math. USSR Izv. 22, 587–618 (1984) (Russian original: 1983)

    Google Scholar 

  15. Steiner R., Tzanakis N. (1991). Simplifying the solution of Ljunggren’s equation. J. Number Theory 37: 123–132

    Article  MathSciNet  Google Scholar 

  16. Thomas W. (1975). A note on undecidable extensions of monadic second order successor arithmetic. Arch. math. Logik 17: 43–44

    Article  Google Scholar 

  17. Volger H. (1983). Turing machines with linear alternation, theories of bounded concatenation and the decision problem of first order theories. Theoret. Comput. Sci. 23: 333–337

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, P. Computational complexity of logical theories of one successor and another unary function. Arch. Math. Logic 46, 123–148 (2007). https://doi.org/10.1007/s00153-006-0031-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-006-0031-1

Keywords

Mathematics Subject Classification (2000)

Navigation