Skip to main content
Log in

Proof-theoretic analysis by iterated reflection

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract.

Progressions of iterated reflection principles can be used as a tool for the ordinal analysis of formal systems. We discuss various notions of proof-theoretic ordinals and compare the information obtained by means of the reflection principles with the results obtained by the more usual proof-theoretic techniques. In some cases we obtain sharper results, e.g., we define proof-theoretic ordinals relevant to logical complexity Π1 0 and, similarly, for any class Π n 0. We provide a more general version of the fine structure relationships for iterated reflection principles (due to U. Schmerl [25]). This allows us, in a uniform manner, to analyze main fragments of arithmetic axiomatized by restricted forms of induction, including IΣ n , IΣ n , IΠ n and their combinations. We also obtain new conservation results relating the hierarchies of uniform and local reflection principles. In particular, we show that (for a sufficiently broad class of theories T) the uniform Σ1-reflection principle for T is Σ2-conservative over the corresponding local reflection principle. This bears some corollaries on the hierarchies of restricted induction schemata in arithmetic and provides a key tool for our generalization of Schmerl's theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.D. Beklemishev L.D.: Remarks on Magari algebras of PA and IΔ0+ EXP. In P. Agliano and A. Ursini, editors, Logic and Algebra, pages 317–325. Marcel Dekker, New York, 1996.

  2. Beklemishev L.D.: Induction rules, reflection principles, and provably recursive functions. Annals of Pure and Applied Logic, 85, 193–242 (1997)

    Google Scholar 

  3. Beklemishev L.D.: Notes on local reflection principles. Theoria, 63, 139–146 (1997)

    Google Scholar 

  4. Beklemishev L.D.: A proof-theoretic analysis of collection. Archive for Mathematical Logic, 37, 275–296 (1998)

    Google Scholar 

  5. Beklemishev L.D.: Parameter free induction and provably total computable functions. Theoretical Computer Science, 224, 13–33 (1999)

    Google Scholar 

  6. Beklemishev L.D.: Provability algebras and proof-theoretic ordinals, I. Logic Group Preprint Series 208, University of Utrecht, 2001. http://www.phil.uu.nl/ preprints.html. To appear in Annals of Pure and Applied Logic

  7. Feferman S.: Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae, 49, 35–92 (1960)

    Google Scholar 

  8. Feferman S.: Transfinite recursive progressions of axiomatic theories. Journal of Symbolic Logic, 27, 259–316 (1962)

    Google Scholar 

  9. Gaifman H., Dimitracopoulos C.: Fragments of Peano's arithmetic and the MDRP theorem. In Logic and algorithmic (Zurich, 1980), (Monograph. Enseign. Math., 30), pages 187–206. Genève, University of Genève, 1982

  10. Goryachev S.: On interpretability of some extensions of arithmetic. Mat. Zametki, 40, 561–572 (1986) In Russian. English translation in Math. Notes, 40

    Google Scholar 

  11. Hájek P., Pudlák P.: Metamathematics of First Order Arithmetic. Springer-Verlag, Berlin, Heidelberg, New York, 1993

  12. Kaye, R., Paris, J., Dimitracopoulos, C.: On parameter free induction schemas. Journal of Symbolic Logic 53, 1082–1097 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Kreisel, G.: Wie die Beweistheorie zu ihren Ordinalzahlen kam und kommt. Jahresbericht der Deutschen Mathematiker-Vereinigung, 78, 177–223 (1977)

    Google Scholar 

  14. Kreisel, G., Lévy, A.L.: Reflection principles and their use for establishing the complexity of axiomatic systems. Zeitschrift f. math. Logik und Grundlagen d. Math., 14, 97–142 (1968)

    Google Scholar 

  15. Leivant, D.: The optimality of induction as an axiomatization of arithmetic. Journal of Symbolic Logic 48, 182–184 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Lindström, P.: The modal logic of Parikh provability. Tech. Rep. Filosofiska Meddelanden, Gröna Serien~5, Univ. Göteborg, 1994

  17. Möllerfeld, M.: Zur Rekursion längs fundierten Relationen und Hauptfolgen. Diplomarbeit, Institut für Mathematische Logik, Westf. Wilhelms-Universität, Münster, 1996

  18. Ono, H.: Reflection principles in fragments of Peano Arithmetic. Zeitschrift f. math. Logik und Grundlagen d. Math., 33, 317–333 (1987)

    Google Scholar 

  19. Parikh, R.: Existence and feasibility in arithmetic. Journal of Symbolic Logic 36, 494–508 (1971)

    MATH  Google Scholar 

  20. Parsons, C.: On a number-theoretic choice schema and its relation to induction. In A. Kino, J. Myhill, and R.E. Vessley, editors, Intuitionism and Proof Theory, pages 459–473. North Holland, Amsterdam, 1970

  21. Parsons, C.: On n-quantifier induction. Journal of Symbolic Logic, 37, 466–482 (1972)

    Google Scholar 

  22. Pohlers, W.: A short course in ordinal analysis. In A. Axcel and S. Wainer, editors, Proof Theory, Complexity, Logic, pages 867–896. Oxford University Press, Oxford, 1993

  23. Pohlers, W.: Subsystems of set theory and second order number theory. In S.R. Buss, editor, Handbook of Proof Theory, pages 210–335. Elsevier, North-Holland, Amsterdam, 1998

  24. Rose, H.E.: Subrecursion: Functions and Hierarchies. Clarendon Press, Oxford, 1984

  25. Schmerl, U.R.: A fine structure generated by reflection formulas over Primitive Recursive Arithmetic. In M. Boffa, D. van Dalen, and K. McAloon, editors, Logic Colloquium'78, pages 335–350. North Holland, Amsterdam, 1979

  26. Smoryński, C.: The incompleteness theorems. In J. Barwise, editor, Handbook of Mathematical Logic, pages 821–865. North Holland, Amsterdam, 1977

  27. Sommer, R.: Transfinite induction within Peano arithmetic. Annals of Pure and Applied Logic 76, 231–289 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Turing, A.M.: System of logics based on ordinals. Proc. London Math. Soc. ser. 2, 45, 161–228 (1939)

    Google Scholar 

  29. Visser, A.: Interpretability logic. In P.P. Petkov, editor, Mathematical Logic, pages 175–208. Plenum Press, New York, 1990

  30. Wilkie, A., Paris, J.: On the scheme of induction for bounded arithmetic formulas. Annals of Pure and Applied Logic 35, 261–302 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.D. Beklemishev.

Additional information

Supported by Alexander von Humboldt Foundation, INTAS grant 96-753, and RFBR grant 8-01-00282.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beklemishev, L. Proof-theoretic analysis by iterated reflection. Arch. Math. Logic 42, 515–552 (2003). https://doi.org/10.1007/s00153-002-0158-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-002-0158-7

Keywords

Navigation