Skip to main content
Log in

Optimal life-cycle fertility in a Barro-Becker economy

  • Original Paper
  • Published:
Journal of Population Economics Aims and scope Submit manuscript

Abstract

Parenthood postponement is a key demographic trend of the last three decades. In order to rationalize that stylized fact, we extend the canonical model by Barro and Becker (Econometrica 57:481–501, 1989) to include two—instead of one—reproduction periods. We examine how the cost structure of early and late children in terms of time and goods affects the optimal fertility timing. Then, we identify conditions that guarantee the existence and uniqueness of a stationary equilibrium with a stationary cohort size. Finally, we examine how the model can rationalize the observed postponement of births, and we highlight two plausible causes: (1) a general rise in the cost of children in terms of goods and (2) a decline in the degree of family altruism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The total fertility rate measures the average number of children a woman has on her life cycle, while assuming that she survives during the entire reproduction period and faces age-specific fertility rates during the whole reproduction period. The data are from Lee (2003).

  2. Data source: United Nations Population Division/DESA 2008.

  3. Data source: United Nations Population Division/DESA 2008.

  4. On the empirical side, see the studies by Schultz (1985), Heckman and Walker (1990), Ermisch (1988), Ermisch and Ogawa (1994), and Joshi (2002).

  5. That stationary population assumption, which allows us to focus only on the birth timing problem, is actually quite plausible given the finiteness of the Earth. One could hardly imagine an ever growing population living on a fixed space.

  6. D’Albis et al. (2010) focus on optimal life-cycle fertility in a continuous time OLG model, under the assumption of a decreasing relationship between the total number of children and the timing of births. Pestieau and Ponthiere (2014) focus on the optimal fertility timing in an OLG model à la Samuelson (1975) and examine whether the Serendipity Theorem still holds in a broader demographic environment with several reproduction periods instead of one.

  7. We assume, without loss of generality, that N 0 = 1, and that m 0 = 0.

  8. Note that this altruistic weighting function presupposes a strictly positive number of descendants, that is, either n t > 0 or m t > 0. This is a weak requirement, since a model of endogenous fertility does not make sense if the population becomes extinct.

  9. Indeed, in the Barro-Becker model, we have N t+1 = n t N t , so that \(a(\cdot )=\alpha /\left [ {N}_{t}^{1-\varepsilon }{n}_{t}^{\varepsilon }{N}_{t}^{\varepsilon }\right ] =\alpha /{N}_{t}{n}_{t}^{\varepsilon }\), implying \( a\left (\cdot \right ) {N}_{t+1}=\alpha g_{t+1}^{1-\varepsilon }=\alpha {n}_{t}^{1-\varepsilon }\). Here, that formula is generalized, to obtain \( a\left (\cdot \right ) {N}_{t+1}=\alpha g_{t+1}^{1-\varepsilon }\) even when g t+1n t as a consequence of m t > 0.

  10. For a study of stability in a four-period OLG model with two reproduction periods, see Pestieau and Ponthiere (2014). Those authors showed that, under exogenous fertility profile, there exists no stable stationary equilibrium when all births are located in the second reproduction period (i.e., n = 0). Note, however, that this section focuses, as the previous one, on an interior optimum, at which n > 0.

  11. Note that this effect is larger when B (the time cost of late children) is larger.

  12. On the contrary, a rise in the time cost of late children B tends to raise the LHS of Eq. 38, while letting the RHS unchanged, and tends thus to reduce κ . We thus obtain, here again, that the costs of early and late children have opposite effects on κ .

  13. For instance, a larger rise in the cost of children could still do the job in the presence of some TFP growth.

References

  • Barro R, Becker G (1989) Fertility choice in a model of economic growth. Econometrica 57(2):481–501

    Article  Google Scholar 

  • Cigno A, Ermisch J (1989) A microeconomic analysis of the timing of births. Eur Econ Rev 33:737–760

    Article  Google Scholar 

  • D’Albis H, Augeraud-Véron E, Schubert K (2010) Demographic-economic equilibria when the age at motherhood is endogenous. J Math Econ 46(6):1211–1221

    Article  Google Scholar 

  • de la Croix D, Michel P (2001) A theory of economic growth. Dynamics and policy with overlapping generations. Cambridge University Press, Cambridge

  • Doepke M (2005) Child mortality and fertility decline: does the Barro-Becker model fit the facts? J Popul Econ 18(2):337–366

    Article  Google Scholar 

  • Ehrlich I, Lui F (1991) Intergenerational trade, longevity and economic growth. J Polit Econ 99:1029–1060

    Article  Google Scholar 

  • Ermisch J (1988) The econometric analysis of birth rate dynamics in Britain. J Hum Res 23(4):563–576

    Article  Google Scholar 

  • Ermisch J, Ogawa N. (1994) Age at motherhood in Japan. J Popul Econ 7:393–420

    Article  Google Scholar 

  • Fernald J (2011) Utilization-adjusted quarterly TFP series for the US business sector. Federal Reserve Bank of San Francisco

  • Gustafsson S (2001) Optimal age at motherhood. Theoretical and empirical considerations on postponement of maternity in Europe. J Popul Econ 14(2):225–247

  • Happel S, Hill J, Low S (1984) An economic analysis of the timing of childbirth. Popul Stud 38:299–311

    Article  Google Scholar 

  • Heckman J, Walker J (1990) The relationship between wages and income and the timing and spacing of births: evidence from Swedish longitudinal data. Econometrica 58:1411–1441

    Article  Google Scholar 

  • Human Fertility Database (2012) Max Planck Institute for Demographic Research (Germany) and Vienna Institute of Demography (Austria). www.humanfertility.org (Accessed 13 Jan 2012)

  • Joshi H (2002) Production, reproduction, and education: women, children and work in a British perspective. Popul Dev Rev 28:445–474

    Article  Google Scholar 

  • Lee R (2003) The demographic transition. Three centuries of fundamental change. J Econ Persp 17(4):167–190

    Article  Google Scholar 

  • Pestieau P, Ponthiere G (2014) Optimal fertility along the life cycle. Econ Theory 55:185–224

    Article  Google Scholar 

  • Putnam R (2000) Bowling alone. New-York, Simon & Schuster

    Google Scholar 

  • Samuelson P (1975) The optimum growth rate for population. Int Econ Rev 16: 531–538

  • Schultz T P (1985) Changing world prices, women’s wages and the fertility transition: Sweden 1860-1910. J Polit Econ 93:1126–1154

    Article  Google Scholar 

  • United Nations Population Division/DESA - Fertility and Family Planning Section: World Fertility Data (2008) http://www.un.org/esa/population/publications/WFD%202008/Main.html

Download references

Acknowledgments

The authors are most grateful to David de la Croix, Andreas Irmen, Holger Strulik, Bertrand Wigniolle, and two anonymous referees for their helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Ponthiere.

Additional information

Responsible editor: Alessandro Cigno

Appendix

Appendix

Proof of Lemma 1

In order to compare the derivatives \(\frac {\partial {N}_{t+1+j}}{\partial {n}_{t} }\) and \(\frac {\partial {N}_{t+1+j}}{\partial m_{t}}\), remember that \( {N}_{t+1}={N}_{t}g_{t+1}={N}_{t}\left ({n}_{t}+\frac {m_{t}{N}_{t-1}}{{N}_{t}}\right ) \). Hence, we have

$$\begin{array}{@{}rcl@{}} \frac{\partial {N}_{t+1}}{\partial {n}_{t}} &=&{N}_{t} \\ \frac{\partial {N}_{t+1}}{\partial m_{t}} &=&{N}_{t-1} \end{array}$$
$$\begin{array}{@{}rcl@{}} \frac{\partial {N}_{t+2}}{\partial {n}_{t}} {\kern-1.5pt}&=&{\kern-1.5pt}{N}_{t}g_{t+2}+{N}_{t+1}\left(\frac{ -m_{t+1}{N}_{t}{N}_{t}}{{N}_{t+1}^{2}}\right) ={N}_{t}\left(g_{t+2}-\frac{m_{t+1}}{ g_{t+1}}\right) ={N}_{t}{n}_{t+1} \\ \frac{\partial {N}_{t+2}}{\partial m_{t}}{\kern-1.5pt} &=&{\kern-1.5pt}{N}_{t-1}g_{t+2}+{N}_{t+1}{\kern-1.5pt}\left(\frac{-m_{t+1}{N}_{t}{N}_{t-1}}{{N}_{t+1}^{2}}\right){} ={\kern-1.5pt}{N}_{t-1}{\kern-1.5pt}\left(g_{t+2}-\frac{ m_{t+1}}{g_{t+1}}\right){\kern-1.5pt} ={\kern-1.5pt}{N}_{t-1}{n}_{t+1} \\ \frac{\partial {N}_{t+3}}{\partial {n}_{t}} &=&{N}_{t}{n}_{t+1}g_{t+3}+{N}_{t+2}\left(\frac{m_{t+2}{N}_{t}{N}_{t+2}-m_{t+2}{N}_{t+1}{N}_{t}{n}_{t+1}}{{N}_{t+2}^{2}}\right) \\ &=&{N}_{t}\left[ {n}_{t+1}{n}_{t+2}+m_{t+2}\right] \\ \frac{\partial {N}_{t+3}}{\partial m_{t}} {\kern-1.5pt}&=&{\kern-1.5pt}{N}_{t-1}{n}_{t+1}g_{t+3}{\kern-1.5pt}+{\kern-1.5pt}m_{t+2}{N}_{t-1}{\kern-1.5pt}\left(\frac{{N}_{t+2}-{N}_{t+1}{n}_{t+1}}{ {N}_{t+2}}\right) \\ &=&{N}_{t-1}\left[ {n}_{t+1}{n}_{t+2}+m_{t+2}\right] \\ &&... \end{array}$$

or, in general terms,

$$\frac{\partial {N}_{t+1+j}}{\partial {n}_{t}}=\frac{{N}_{t}}{{N}_{t-1}}\frac{ \partial {N}_{t+1+j}}{\partial m_{t}}$$

Thus, whether the marginal impact of raising early fertility is larger than the marginal impact of raising late fertility depends on whether the cohort size is growing over time or not. If N t > N t − 1 or g t > 1, we necessarily have, everything else being unchanged, that \(\frac {\partial {N}_{t+1+j}}{\partial {n}_{t}}>\frac {\partial {N}_{t+1+j}}{\partial m_{t}}\).

Proof of Proposition 1

From the condition

$$1=\left[ \alpha \frac{bA(1-\eta )\kappa^{\eta }+e}{\left[ \frac{BA(1-\eta )\kappa^{\eta }+E}{A\eta \kappa^{\eta -1}}\right] }\right]^{\frac{1}{ \varepsilon }},$$

the existence of a stationary equilibrium with a stationary cohort size requires κ to satisfy the condition:

$$A\kappa^{\eta }(1-\eta )B+E-\alpha \eta A\kappa^{\eta -1}e=\alpha \eta (1-\eta )bA^{2}\kappa^{2\eta -1}$$

Let us denote the LHS by φ(κ)≡A κ η(1 − η)B + Eα η A κ η − 1 e and the RHS by ψ(κ)≡α η(1 − η)b A 2 κ 2η − 1.

Three cases can arise, depending on \(\eta \gtreqqless 1/2\).

When η < 1/2, we have φ(0) = −∞ and φ(+∞) = +∞. We also have φ′(κ) = A η κ η − 1(1 − η)B − (η − 1)α η A κ η − 2 e > 0.

Regarding ψ(κ), we have ψ(0) = + ∞ and ψ(+∞) = 0. We also have ψ′(κ) = α η(1 − η)(2η − 1)b A 2 κ 2η − 2 < 0.

Given that φ(0) < ψ(0) and that φ(+∞) > ψ(+∞), it follows that there exists, by continuity, a level of κ such that φ(κ) = ψ(κ). Moreover, given the strict monotonicity of φ(κ) and ψ(κ), the intersection of φ(κ) and ψ(κ) is unique.

When η = 1/2, we have φ(0) = −∞ and φ(+∞) = +∞. We also have φ′(κ) = A η κ η − 1(1 − η)B − (η − 1)α η A κ η − 2 e > 0.

Regarding ψ(κ), we have ψ(0) = α η(1 − η)b A 2 < 0 and ψ(+∞) = α η(1 − η)b A 2 < 0. We also have ψ′(κ) = 0.

Given that φ(0) < ψ(0) and that φ(+∞) > ψ(+∞), it follows that there exists, by continuity, a level of κ such that φ(κ) = ψ(κ). Moreover, given the strict monotonicity of φ(κ), the intersection of φ(κ) and ψ(κ) is unique.

When η > 1/2, we have φ(0) = −∞ and φ(+∞) = +∞. We also have φ′(κ) = A η κ η − 1(1 − η)B − (η − 1)α η A κ η − 2 e > 0 and φ″(κ) = A η(η − 1)κ η − 2(1 − η)B − (η − 1)(η − 2)α η A κ η − 3 e < 0.

Regarding ψ(κ), we have ψ(0) = 0 and ψ(+∞) = +∞. We also have ψ′(κ) = α η(1 − η)(2η − 1)b A 2 κ 2η − 2 < 0 and ψ″(κ) = α η(1 − η)(2η − 1)(2η − 2)b A 2 κ 2η − 3 < 0.

Note that, when κ → 0, we have φ′(κ) = A η κ η − 1(1 − η)B − (η − 1)α η A κ η − 2 e = +∞ > ψ′(κ) = α η(1 − η)(2η − 1)b A 2 κ 2η − 2 = 0.

Note also that, when κ → +∞, we have φ′(κ) = A η κ η − 1(1 − η)B − (η − 1)α η A κ η − 2 e = 0 < ψ′(κ) = α η(1 − η)(2η − 1)b A 2 κ 2η − 2 < 0.

We thus have φ(0) < ψ(0), with φ′(κ) > ψ′(κ) when κ → 0 and φ′(κ) < ψ′(κ) when κ → +∞.

Given that φ(0) < ψ(0), as well as φ′(κ) > 0, φ″(κ) < 0, ψ′(κ) > 0 and ψ″(κ) < 0, three distinct cases can arise: either no intersection of φ(κ) and ψ(κ), or a single intersection of φ(κ) and ψ(κ), or a double intersection of φ(κ) and ψ(κ). In the first case, we have that, for all κ > 0, it is the case that φ(κ) < ψ(κ). The two other cases can be described as follows. For low levels of κ, we have φ(κ) < ψ(κ), but the higher slope of φ(κ) for low levels of κ makes the φ(κ) curve intersect the ψ(κ) from below. That intersection occurs for low levels of κ, for which φ′(κ) > ψ′(κ). Let us denote that intersection by κ . At that intersection, φ(κ) crosses ψ(κ) from below, since we initially have φ(0) < ψ(0). Then, two cases can arise. First, it is possible that the two curves φ(κ) and ψ(κ) do not intersect any more, the curve ψ(κ) remaining is always below φ(κ). Alternatively, φ(κ) and ψ(κ) may intersect a second time. Those two cases can arise, since we know that, although φ′(κ) > ψ′(κ) at κ = κ , we have φ′(κ) = 0 < ψ′(κ) when κ → +∞. Hence, it can be the case that there exists a second intersection, which can be denoted by κ +.

Let us now concentrate on condition (36). The existence of a stationary equilibrium with a stationary cohort size requires condition (36) to be satisfied. Since the stationarity of the cohort size requires κ = κ , it follows that there exists a stationary equilibrium with stationary population size if and only if there exists some interior level of early fertility n ∈ ]0, 1[ such that the following condition holds:

$$\kappa^{\ast }=\frac{\left[ \begin{array}{l} \left[ A(1-\eta )\kappa^{\ast \eta }(1-bn^{\ast })-n^{\ast }e\right] \left[ (A\eta \kappa^{\ast \eta -1})\beta \right]^{\frac{1}{1-\sigma }} \\ -A(1-\eta )\kappa^{\ast \eta }(1-B(1-n^{\ast }))+(1-n^{\ast })E \end{array} \right] }{(2-bn^{\ast }-B(1-n^{\ast }))\left[ A\eta \kappa^{\ast \eta -1}+ \left[ (A\eta \kappa^{\ast \eta -1})\beta \right]^{\frac{1}{1-\sigma }} \right] }$$

In general terms, that condition can be rewritten as

$$\begin{array}{@{}rcl@{}} &&{}\kappa^{\ast }(2-bn-B(1-n))\left[ A\eta \kappa^{\ast \eta -1}+\left[ (A\eta \kappa^{\ast \eta -1})\beta \right]^{\frac{1}{1-\sigma }}\right] \\ &=&\left[ A(1-\eta )\kappa^{\ast \eta }(1-bn)-ne\right] \left[ (A\eta \kappa^{\ast \eta -1})\beta \right]^{\frac{1}{1-\sigma }}\\&&-A(1-\eta )\kappa^{\ast \eta }(1-B(1-n))+(1-n)E \end{array}$$

Further simplifications yield

$$\begin{array}{@{}rcl@{}} &&{}A\eta \kappa^{\ast \eta }(2-bn-B(1-n))+\left[ (A\eta )\beta \right]^{ \frac{1}{1-\sigma }}\kappa^{\ast \frac{\eta -\sigma }{1-\sigma } }(2-bn-B(1-n)) \\ & {\kern10pt} =&A^{\frac{2-\sigma }{1-\sigma }}(1-\eta )\left(\eta \beta \right)^{\frac{ 1}{1-\sigma }}(1-bn)\kappa^{\ast \frac{2\eta -1-\eta \sigma }{1-\sigma }}-ne \left[ (A\eta )\beta \right]^{\frac{1}{1-\sigma }}\kappa^{\ast \frac{\eta -1}{1-\sigma }} \\ &&-A(1-\eta )\kappa^{\ast \eta }(1-B(1-n))+(1-n)E \end{array}$$

Denote \(A^{\frac {2-\sigma }{1-\sigma }}(1-\eta )\left (\eta \beta \right )^{ \frac {1}{1-\sigma }}\)by Γ and \(\left [ \eta A\beta \right ]^{\frac {1}{ 1-\sigma }}\) by Θ. That condition can be rewritten as follows. There exists some interior level of early fertility n ∈ ]0, 1[ such that

$$\begin{array}{@{}rcl@{}} && {} A\eta \kappa^{\ast \eta }(2-bn-B(1-n))+\Theta \kappa^{\ast \frac{\eta -\sigma }{1-\sigma }}(2-bn-B(1-n)) \\ &&+ne\Theta \kappa^{\ast \frac{\eta -1}{1-\sigma }}+A(1-\eta )\kappa^{\ast \eta }(1-B(1-n))-(1-n)E =\kappa^{\ast \frac{2\eta -\eta \sigma -1}{1-\sigma }}(1-bn)\Gamma \end{array}$$

Denote the LHS by

$$\begin{array}{@{}rcl@{}} \chi \left(n\right) &\equiv &A\eta \kappa^{\ast \eta }(2-bn-B(1-n))+\Theta \kappa^{\ast \frac{\eta -\sigma }{1-\sigma }}(2-bn-B(1-n)) \\ &&+ne\Theta \kappa^{\ast \frac{\eta -1}{1-\sigma }}+A(1-\eta )\kappa^{\ast \eta }(1-B(1-n))-(1-n)E \end{array}$$

and the RHS by

$$\phi \left(n\right) \equiv \kappa^{\ast \frac{2\eta -\eta \sigma -1}{ 1-\sigma }}(1-bn)\Gamma$$

We have \(\chi \left (0\right ) =A\eta \kappa ^{\ast \eta }(2-B)+\Theta \kappa ^{\ast \frac {\eta -\sigma }{1-\sigma }}(2-B)+A(1-\eta )\kappa ^{\ast \eta }(1-B)-E\gtrless 0\) and \(\chi \left (1\right ) =A\eta \kappa ^{\ast \eta }(2-b)+\Theta \kappa ^{\ast \frac {\eta -\sigma }{1-\sigma }}(2-b)+e\Theta \kappa ^{\ast \frac {\eta -1}{1-\sigma }}+A(1-\eta )\kappa ^{\ast \eta }>0\).

Note also that, under Bb, we have

$$\chi^{\prime }\left(n\right) =A\eta \kappa^{\ast \eta }(B-b)+\Theta \kappa^{\ast \frac{\eta -\sigma }{1-\sigma }}(B-b)+e\Theta \kappa^{\ast \frac{\eta -1}{1-\sigma }}+A(1-\eta )\kappa^{\ast \eta }B+E\geq 0$$

We have also \(\phi \left (0\right ) =\kappa ^{\ast \frac {2\eta -\eta \sigma -1 }{1-\sigma }}\Gamma >0\) and \(\phi (1)=\kappa ^{\ast \frac {2\eta -\eta \sigma -1}{1-\sigma }}(1-b)\Gamma >0\), as well as

$$\phi^{\prime }\left(n\right) =\kappa^{\ast \frac{2\eta -\eta \sigma -1}{ 1-\sigma }}(-b)\Gamma \leq 0$$

Hence, two sufficient conditions for the existence and uniqueness of n are χ(0) < ϕ(0) and χ(1)>ϕ(1). In formulas

$$\left(A\eta \kappa^{\ast \eta }+\Theta \kappa^{\ast \frac{\eta -\sigma }{ 1-\sigma }}\right) (2-B)+A(1-\eta )\kappa^{\ast \eta }(1-B)-E<\kappa^{\ast \frac{2\eta -\eta \sigma -1}{1-\sigma }}\Gamma$$

and

$$\left(A\eta \kappa^{\ast \eta }+\Theta \kappa^{\ast \frac{\eta -\sigma }{ 1-\sigma }}\right) (2-b)+e\Theta \kappa^{\ast \frac{\eta -1}{1-\sigma } }+A(1-\eta )\kappa^{\ast \eta }>\kappa^{\ast \frac{2\eta -\eta \sigma -1}{ 1-\sigma }}(1-b)\Gamma.$$

When those two conditions are satisfied, we have that there exists a stationary equilibrium with a stationary cohort size.

Proof of Corollary 1

Let us start from expression (36):

$$\kappa =\frac{\left[ \begin{array}{l} \left[ A(1-\eta )\kappa^{\eta }(1-bn)-ne\right] \left[ (A\eta \kappa^{\eta -1})\beta \right]^{\frac{1}{1-\sigma }} \\ -A(1-\eta )\kappa^{\eta }(1-B(1-n))+(1-n)E \end{array} \right] }{(2-bn-B(1-n))\left[ A\eta \kappa^{\eta -1}+\left[ (A\eta \kappa^{\eta -1})\beta \right]^{\frac{1}{1-\sigma }}\right] }$$

Isolating n yields

$$n=\frac{{}\left[A(1{}-{}\eta )\kappa^{\eta }\right] \left[ (A\eta \kappa^{\eta -1})\beta \right]^{\frac{1}{1-\sigma }}{}-{}A(1{}-{}\eta )\kappa^{\eta }(1{}-{}B){}+{}E{}-{}\kappa (2{}-{}B){}\left[ A\eta \kappa^{\eta -1}{}+{}\left[ (A\eta \kappa^{\eta -1})\beta \right]^{\frac{1}{1-\sigma }}{}\right] }{\left[{}\kappa \left(B{}-{}b\right) \left[{}A\eta \kappa^{\eta -1}{}+{}\left[ (A\eta \kappa^{\eta -1})\beta \right]^{\frac{1}{1-\sigma }}\right] {}+{}\left[ A(1-\eta )\kappa^{\eta }b{}+{}e\right] \left[ (A\eta \kappa^{\eta -1})\beta \right]^{\frac{1}{ 1-\sigma }}{}+{}A(1{}-{}\eta )\kappa^{\eta }B{}+{}E\right] }$$

Given that κ = κ at the equilibrium, we obtain n by replacing κ by κ in that expression. Similar substitutions can be made for the special cases of no time cost and no resource cost of children.

Proof of Lemma 2

Regarding \(\frac {\partial \frac {{N}_{t+s-1}}{{N}_{t+s}}}{\partial {n}_{t}}\), we have, for s = 0:

$$\frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial {n}_{t}}=\frac{\partial \frac{{N}_{t-1}}{{N}_{t}}}{\partial {n}_{t}}=0$$

For s = 1, s = 2, and s = 3:

$$\begin{array}{@{}rcl@{}} \frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial {n}_{t}} &=&\frac{\partial \frac{{N}_{t}}{{N}_{t+1}}}{\partial {n}_{t}}=\frac{-{N}_{t}{N}_{t}}{{N}_{t+1}^{2}} \\ \frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial {n}_{t}} {} &=& {}\frac{\partial \frac{{N}_{t+1}}{{N}_{t+2}}}{\partial {n}_{t}}{}={}\frac{{N}_{t}{N}_{t+2}-{N}_{t+1}\left({n}_{t+1}{N}_{t}\right) }{{N}_{t+2}^{2}}{}={}\frac{{N}_{t}\left({N}_{t+2}-{N}_{t+1}{n}_{t+1}\right) }{{N}_{t+2}^{2}}{}={}\frac{{{N}_{t}^{2}}m_{t+1}}{ {N}_{t+2}^{2}} \\ \frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial {n}_{t}} {}&=&{}\frac{\partial \frac{{N}_{t+2}}{{N}_{t+3}}}{\partial {n}_{t}}{}={}\frac{{N}_{t+3}\left({n}_{t+1}{N}_{t}\right) {}-{}{N}_{t+2}\left({n}_{t+2}{n}_{t+1}{N}_{t}+m_{t+2}{N}_{t}\right) }{ {N}_{t+3}^{2}}\\ &=&{}\frac{-{{N}_{t}^{2}}m_{t+1}m_{t+2}}{{N}_{t+3}^{2}} \end{array}$$

Hence, for s > 1, we have

$$\frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial {n}_{t}}=\frac{\left(-1\right)^{s}{{N}_{t}^{2}}m_{t+1}m_{t+2}...m_{t+s-1}}{{N}_{t+s}^{2}}$$

Regarding \(\frac {\partial \frac {{N}_{t+1+s}}{{N}_{t+s}}}{\partial {n}_{t}}\), we have, for s = 0:

$$\frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial {n}_{t}}=\frac{\partial \frac{{N}_{t+1}}{{N}_{t}}}{\partial {n}_{t}}=\frac{{{N}_{t}^{2}}}{{{N}_{t}^{2}}}=1$$

For s = 1, s = 2, and s = 3:

$$\begin{array}{@{}rcl@{}} \frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial {n}_{t}} &=&\frac{\partial \frac{{N}_{t+2}}{{N}_{t+1}}}{\partial {n}_{t}}=\frac{ {n}_{t+1}{N}_{t}{N}_{t+1}-{N}_{t+2}{N}_{t}}{{N}_{t+1}^{2}}=\frac{-{{N}_{t}^{2}}m_{t+1}}{ {N}_{t+1}^{2}} \\ \frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial {n}_{t}} {} &=& {}\frac{\partial \frac{{N}_{t+3}}{{N}_{t+2}}}{\partial {n}_{t}}{}={}\frac{{N}_{t+2}\left({n}_{t+2}{n}_{t+1}{N}_{t}{}+{}m_{t+2}{N}_{t}\right) {}-{}{N}_{t+3}\left({n}_{t+1}{N}_{t}\right) }{ {N}_{t+2}^{2}}{}={}\frac{{{N}_{t}^{2}}m_{t+1}m_{t+2}}{{N}_{t+2}^{2}} \\ \frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial {n}_{t}} &=&\frac{\partial \frac{{N}_{t+4}}{{N}_{t+3}}}{\partial {n}_{t}}=m_{t+3}\frac{\left({n}_{t+1}{N}_{t}\right) {N}_{t+3}-{N}_{t+2}\left({n}_{t+2}\left({n}_{t+1}{N}_{t}\right) +m_{t+2}{N}_{t}\right) }{{N}_{t+3}^{2}} \\ &=&\frac{-{{N}_{t}^{2}}m_{t+1}m_{t+2}m_{t+3}}{{N}_{t+3}^{2}} \end{array}$$

Hence, for s > 0, we have

$$\frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial {n}_{t}}=\frac{\left(-1\right)^{s}{{N}_{t}^{2}}m_{t+1}...m_{t+s}}{{N}_{t+s}^{2}}$$

Regarding \(\frac {\partial \frac {{N}_{t+s-1}}{{N}_{t+s}}}{\partial m_{t}}\), we have, for s = 0:

$$\frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial m_{t}}=\frac{{\partial} {\frac{{N}_{t-1}}{{N}_{t}}}}{\partial m_{t}}=0$$

For s = 1, s = 2, and s = 3:

$$\begin{array}{@{}rcl@{}} \frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial m_{t}} &=&\frac{\partial \frac{{N}_{t}}{{N}_{t+1}}}{\partial m_{t}}=\frac{-{N}_{t}{N}_{t-1}}{{N}_{t+1}^{2}} \\ \frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial m_{t}} &=&\frac{\partial \frac{{N}_{t+1}}{{N}_{t+2}}}{\partial m_{t}}=\frac{{N}_{t-1}{N}_{t+2}-{N}_{t+1}\left({n}_{t+1}{N}_{t-1}\right) }{{N}_{t+2}^{2}}=\frac{{N}_{t}{N}_{t-1}m_{t+1}}{{N}_{t+2}^{2}} \\ \frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial m_{t}} &=&\frac{\partial \frac{{N}_{t+2}}{{N}_{t+3}}}{\partial m_{t}}=\frac{\left({n}_{t+1}{N}_{t-1}\right) {N}_{t+3}-{N}_{t+2}\left({n}_{t+2}\left({n}_{t+1}{N}_{t-1}\right) +m_{t+2}{N}_{t-1}\right) }{{N}_{t+3}^{2}} \\ &=&\frac{-{N}_{t}{N}_{t-1}m_{t+1}m_{t+2}}{{N}_{t+3}^{2}} \end{array}$$

Hence, for s > 1, we have

$$\frac{\partial \frac{{N}_{t+s-1}}{{N}_{t+s}}}{\partial m_{t}}=\frac{\left(-1\right)^{s}{N}_{t}{N}_{t-1}m_{t+1}...m_{t+s}}{{N}_{t+s}^{2}}$$

Finally, regarding \(\frac {\partial \frac {{N}_{t+1+s}}{{N}_{t+s}}}{\partial m_{t}} \), we have, for s = 0:

$$\frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial m_{t}}=\frac{\partial \frac{{N}_{t+1}}{{N}_{t}}}{\partial m_{t}}=\frac{{N}_{t-1}}{{N}_{t}}$$

For s = 1, s = 2, and s = 3:

$$\begin{array}{@{}rcl@{}} \frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial m_{t}} &=&\frac{\partial \frac{{N}_{t+2}}{{N}_{t+1}}}{\partial m_{t}}=\frac{-m_{t+1}{N}_{t}{N}_{t-1}}{{N}_{t+1}{~}^{2}} \\ \frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial m_{t}} {} &=& {}\frac{\partial \frac{{N}_{t+3}}{{N}_{t+2}}}{\partial m_{t}}{}={}m_{t+2}\frac{({N}_{t-1})\left({N}_{t+2}\right) {}-{}{N}_{t+1}\left({n}_{t+1}m_{t}{N}_{t-1}\right) }{\left({N}_{t+2}\right)^{2}}{}={}\frac{{N}_{t-1}{N}_{t}m_{t+1}m_{t+2}}{{N}_{t+2}^{2}} \\ \frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial m_{t}} {}&=&{}\frac{\partial \frac{{N}_{t+4}}{{N}_{t+3}}}{\partial m_{t}}{}={}\frac{{}\left[ \begin{array}{l} {N}_{t+3}\left({n}_{t+3}\left({n}_{t+2}{n}_{t+1}{N}_{t-1}{}+{}m_{t+2}{N}_{t-1}\right) {}+{}m_{t{}+{}3}\left({n}_{t{}+{}1}{N}_{t-1}\right) \right) \\ -{N}_{t+4}\left({n}_{t+2}\left({n}_{t+1}{N}_{t-1}\right) {}+{}m_{t+2}{N}_{t-1}\right) \end{array} \right] }{{N}_{t+3}^{2}} \\ &=&\frac{-{N}_{t-1}{N}_{t}m_{t+1}m_{t+2}m_{t+3}}{{N}_{t+3}^{2}} \end{array}$$

Hence, for s > 0, we have

$$\frac{\partial \frac{{N}_{t+1+s}}{{N}_{t+s}}}{\partial m_{t}}=\frac{\left(-1\right)^{s}{N}_{t-1}{N}_{t}m_{t+1}m_{t+2}..m_{t+s}}{\left({N}_{t+s}\right)^{2} }$$

Proof of Proposition 2

Take the expression for κ t+1 at g = 1, x t − 1 = x t = x t+1 and κ = κ . Isolating n yields

$$n=\frac{\left[ \begin{array}{l} \frac{\left[ A(1-\eta )\kappa^{\ast \eta }+xA\eta \kappa^{\ast \eta -1} \right] \left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{ 1-\sigma }}}{A\eta \kappa^{\ast \eta -1}}-\frac{A(1-\eta )\kappa^{\ast \eta }(1-B)}{A\eta \kappa^{\ast \eta -1}} \\ +\frac{E+x}{A\eta \kappa^{\ast \eta -1}}+\left(x-\kappa^{\ast }\left[ 1+(1-B)\right] \right) \left(1+\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}}{A\eta \kappa^{\ast \eta -1}} \right) \end{array} \right] }{\left[ \begin{array}{l} \kappa \left[ -b+B\right] \left(1+\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}}{A\eta \kappa^{\ast \eta -1}} \right) +A(1-\eta )\kappa^{\ast \eta }b\left(\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}}{A\eta \kappa^{\ast \eta -1}}\right) \\ +\frac{A(1-\eta )\kappa^{\ast \eta }B}{A\eta \kappa^{\ast \eta -1}}+\frac{E }{A\eta \kappa^{\ast \eta -1}}+e\left(\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}}{A\eta \kappa^{\ast \eta -1}} \right) \end{array} \right] }$$

When Bb ≥ 0, that expression is unambiguously increasing in x:

$$\frac{\partial n}{\partial x}=\frac{1+\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}{}+{}\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}+1}{A\eta \kappa^{\ast \eta -1} }}{\left[ \begin{array}{l} \kappa^{\ast }\left[ B{}-{}b\right] \left(1{}+{}\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}}{A\eta \kappa^{\ast \eta -1}} \right) {}+{}A(1{}-{}\eta )\kappa^{\ast \eta }b\left(\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}}{A\eta \kappa^{\ast \eta -1}}\right) \\ +\frac{A(1-\eta )\kappa^{\ast \eta }B}{A\eta \kappa^{\ast \eta -1}}+\frac{E }{A\eta \kappa^{\ast \eta -1}}+e\left(\frac{\left((A\eta \kappa^{\ast \eta -1})\beta \right)^{\frac{1}{1-\sigma }}}{A\eta \kappa^{\ast \eta -1}} \right) \end{array} \right] }>0$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pestieau, P., Ponthiere, G. Optimal life-cycle fertility in a Barro-Becker economy. J Popul Econ 28, 45–87 (2015). https://doi.org/10.1007/s00148-014-0511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00148-014-0511-2

Keywords

JEL Classification

Navigation