Skip to main content
Log in

Automatic inspection of aeronautic components

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Industrial processes are costly in terms of time, money and customer satisfaction. The global economic pressures have gradually led businesses to improve these processes to become more competitive. As a result, the demand of intelligent visual inspection systems aimed at ensuring the high quality in production lines is increasing. In this paper, we present a computer vision system that, using only images, is able to address two main problems: (i) model checking: automatically check whether a component meets given specifications or rules, (ii) visual inspection: defect inspection on irregular surfaces, in particular, decolourization and scratches detection. In the experimental results, we show the effectiveness of our system and the readiness of such technologies for their integration in industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. We select camera 1 as master but any other camera could be used.

  2. This can also be done by modelling the rays in the reference system of the camera and then roto-translating the rays into the reference system of the model.

References

  1. Aiger, D., Talbot, H.: The phase only transform for unsupervised surface defect detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 295–302 (2010)

  2. Alarcón-Herrera, J., Xiang, C., Xuebo, Z.: Viewpoint selection for vision systems in industrial inspection. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4934 – 4939 (2014)

  3. Bahlmann, C., Heidemann, G., Ritter, H.: Artificial neural networks for automated quality control of textile seams. Pattern Recognit. 32(1), 1049–1060 (1999)

    Article  Google Scholar 

  4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, New York, NY, USA (1992)

  5. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with OpenCV Library, 1st edn. O’Reilly Media, Beijing (2008)

  6. Caulier, Y., Bourennane, S.: An image content description technique for the inspection of specular objects. EURASIP J. Adv. Signal Process. 2008, 195263 (2008)

    Article  MATH  Google Scholar 

  7. Chin, R.: Automated visual inspection: 1981 to 1987. Comput. Vis. Gr. Image Process. 41(3), 346–381 (1988)

    Article  Google Scholar 

  8. Chin, R., Harlow, C.: Automated visual inspection: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 4(6), 557–573 (1982)

    Article  Google Scholar 

  9. Choi, J., Kim, C.: Unsupervised detection of surface defects: A two-step approach. In: 2012 19th IEEE International Conference on Image Processing, pp. 1037–1040 (2012)

  10. Corke, P.I.: Robotics, Vision and Control: Fundamental Algorithms in Matlab. Springer, Berlin, Heidelberg (2011)

    Book  MATH  Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  12. Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The Pascal visual object classes VOC challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28, 2000 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47(6), 2280–2292 (2014). doi:10.1016/j.patcog.2014.01.005

  15. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  16. Kumar, A.: Computer-vision-based fabric defect detection: A survey. IEEE Trans. Ind. Electron. 55(1), 348–363 (2008)

    Article  Google Scholar 

  17. Legland, D.: Matgeom: matlab geometry toolbox for 2d/3d geometric computing. https://github.com/dlegland/matGeom (2009)

  18. Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: an accurate o(n) solution to the pnp problem. Int. J. Comput. Vis. 81(2), 155–166 (2008)

    Article  Google Scholar 

  19. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malamas, E., Petrakis, E., Zervakis, M., Petit, L., Legat, J.D.: A survey on industrial vision systems, applications and tools, image and vision computing 21. Image Vis. Comput. 21, 171–188 (2003)

    Article  Google Scholar 

  21. Markou, M., Singh, S.: Novelty detection: a review—part 2: neural network-based approaches. Signal Process. 83(12), 2499–2521 (2003)

    Article  MATH  Google Scholar 

  22. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moganti, M., Ercal, F., Dagli, C., Tsunekawa, S.: Automatic PCB inspection algorithms: a survey. Comput. Vis. Image Underst. (CVIU) 63(2), 287–313 (1996)

    Article  Google Scholar 

  24. Newman, T., Jain, A.: A survey of automated visual inspection. Comput Vis Image Underst. (CVIU) 61, 231–262 (1995)

    Article  Google Scholar 

  25. Ojala, T., Pietikinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. Lett. 1(29), 51–59 (1998)

    Google Scholar 

  26. Ojala, T., Pietikinen, M., Menp, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Learn. (PAMI) 24(7), 971–987 (2002)

    Article  Google Scholar 

  27. Park, Y., Kweon, I.S.: Ambiguous surface defect image classification of amoled displays in smartphones. IEEE Trans. Ind. Inform. 99, 1–1 (2016)

    Google Scholar 

  28. Peng, X., Chen, Y., Yu, W., Zhou, Z., Sun, G.: An online defects inspection method for float glass fabrication based on machine vision. Int. J. Adv. Manuf. Technol. 39(11), 1180–1189 (2007)

    Google Scholar 

  29. Scott, W.R.: Model-based view planning. Mach. Vis. Appl. 20(1), 47–69 (2009)

    Article  MATH  Google Scholar 

  30. Sturm, P.F., Maybank, S.J.: On plane-based camera calibration: A general algorithm, singularities, applications. In: 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. 437 vol. 1 (1999)

  31. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, New York (2010)

    MATH  Google Scholar 

  32. Thomas, A., Rodd, M., Holt, J., Neill, C.: Real-time industrial visual inspection: a review. Real Time Imaging 1(2), 139–158 (1995)

    Article  Google Scholar 

  33. Torres, F., Sebastian, J., Aracil, R., Jimenez, L., Reinoso, O.: Automated real-time visual inspection system for high-resolution superimposed printings. Image Vis. Comput. 16(1213), 947–958 (1998)

    Article  Google Scholar 

  34. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment—a modern synthesis. In: Proceedings of the International Workshop on Vision Algorithms: Theory and Practice. ICCV ’99, . Springer-Verlag, London, pp. 298–372 (2000)

  35. Tucker, J.: Inside beverage can inspection: an application from start to finish. In: Proceedings of the Vision ’89 Conference (1989)

  36. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005)

    Article  Google Scholar 

  37. Xie, X.: A review of recent advances in surface defect detection using texture analysis techniques. Electron. Lett. Comput. Vis. Image Anal. 7(3), 1–22 (2008)

    Google Scholar 

  38. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: ICCV, pp. 666–673 (1999)

  39. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans.Pattern Anal. Mach. Intell. (PAMI) 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out under the support of the AvioAero company. Furthermore, we would like to thank Dr. Enrique Muñoz-Corral and Dr. Luca Mazzei for their invaluable technical and human support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Beltrán-González.

Ethics declarations

Conflict of interest

This research was funded by Avio Aero (grant number P37508).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biagio, M.S., Beltrán-González, C., Giunta, S. et al. Automatic inspection of aeronautic components. Machine Vision and Applications 28, 591–605 (2017). https://doi.org/10.1007/s00138-017-0839-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0839-1

Keywords

Navigation