Skip to main content
Log in

Layer extraction in rodent retinal images acquired by optical coherence tomography

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Optical coherence tomography (OCT) is a modern technique that allows for in vivo, fast, high-resolution 3D imaging. OCT can be efficiently used in eye research and diagnostics, when retinal images are processed to extract borders of retinal layers. In this paper, we present two novel algorithms for delineation of three main borders in rodent retinal images. The first, fast algorithm is based on row projections in a sliding window. It provides initial borders for a slower but more precise variational algorithm that iteratively refines the borders. The results obtained by the two algorithms are quantitatively evaluated by comparison to the borders manually extracted in a set of retinal images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabrera Fernández D., Salinas H.M., Puliafito C.A.: Automated detection of retinal layer structures on optical coherence tomography images. Optics Express 13(25), 10200–10216 (2005)

    Article  Google Scholar 

  2. Caselles V., Catté F., Coll T., Dibos F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caselles V., Kimmel R., Sapiro G.: Geodesic active contours. Int. J. Comput. Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  4. Chan T.F., Vese L.A.: Contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  5. Fabritius T. et al.: Automated segmentation of the macula by optical coherence tomography. Optics Express 17(18), 15659–15669 (2009)

    Article  Google Scholar 

  6. Faugeras, O., Gomes, J., Keriven, R.: Variational principles in computational stereo. In: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Berlin (2003)

  7. Faugeras, O., Keriven, R.: Variational principles, surface evolution, PDE-s, level set methods, and the stereo problem. Technical report 3021, INRIA (1996)

  8. Faugeras O., Keriven R.: Variational principles, surface evolution, PDE-s, level set methods, and the stereo problem. IEEE Trans. Image Process. 7, 336–344 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fuller A.R. et al.: Segmentation of three-dimensional retinal image data. IEEE Trans. Visual. Comput. Graph. 13(6), 1719–1726 (2007)

    Article  Google Scholar 

  10. Garvin M.K. et al.: Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008)

    Article  Google Scholar 

  11. Kajić V. et al.: Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis. Optics Express 18(14), 14730–14744 (2010)

    Article  Google Scholar 

  12. Kass M., Witkin A., Terzopoulos D.: Snakes: Active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  13. Leitgeb, R.A.: Paradigm shifts in optical coherence tomography. In: Proceedings of SPIE, vol. 6616, 661604 (2007)

  14. Mishra A., Wong A., Bizheva K., Clausi D.A.: Intra-retinal layer segmentation in optical coherence tomography images. Optics Express 17(26), 23719–23728 (2009)

    Article  Google Scholar 

  15. Osher S., Fedkiw R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Puvanathasan P., Bizheva K.: Speckle noise reduction algorithm for optical coherence tomography based on interval type II fuzzy set. Optics Express 15, 15747–15758 (2007)

    Article  Google Scholar 

  17. Ruggeri M. et al.: In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest. Ophthalmol. Visual Sci. 48(4), 1808 (2007)

    Article  Google Scholar 

  18. Ruggeri M. et al.: Retinal tumor imaging and volume quantification in mouse model using spectral-domain optical coherence tomography. Optics Express 17(5), 4074 (2009)

    Article  Google Scholar 

  19. Salinas H.M., Fernández D.C.: Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Trans. Med. Imaging 26(6), 761–771 (2007)

    Article  Google Scholar 

  20. Sethian J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  21. Shah D.M.J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 17, 577–685 (1989)

    Google Scholar 

  22. Szkulmowski M. et al.: Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies. J. Biomed. Optics 12, 041207 (2007)

    Article  Google Scholar 

  23. Wong A., Mishra A., Bizheva K., Clausi D.A.: General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery. Optics Express 18(8), 8338–8352 (2010)

    Article  Google Scholar 

  24. Yazdanpanah, A., Hamarneh, G., Smith, B., Sarunic M.: Intra-retinal layer segmentation in optical coherence tomography using an active contour approach. Medical image computing and computer-assisted intervention, MICCAI 2009, pp. 649–656 (2009)

  25. Zawadzki R.J. et al.: Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets. J. Biomed. Optics 12, 041206 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Chetverikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molnár, J., Chetverikov, D., Cabrera DeBuc, D. et al. Layer extraction in rodent retinal images acquired by optical coherence tomography. Machine Vision and Applications 23, 1129–1139 (2012). https://doi.org/10.1007/s00138-011-0343-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0343-y

Keywords

Navigation