Skip to main content
Log in

Left ventricular systolic dysfunction during septic shock: the role of loading conditions

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

The clinical significance of septic myocardial dysfunction is controversial, a fact that may be explained by the influence of loading conditions. Many indices may be useful to characterize cardiac function during septic shock, but their feasibility and physiological coherence in the clinical setting are unknown.

Methods

Hemodynamic and echocardiographic data with tissue Doppler and speckle tracking were prospectively recorded on the first 3 days of human septic shock. Hypokinesia, normokinesia, and hyperkinesia were defined as a left ventricular ejection fraction (LVEF) of <45, 45–60, and >60%, respectively. Twelve hemodynamic indices exploring contractility and loading conditions were assessed and analyzed.

Results

Two hundred and ninety-seven echocardiographies were performed in 132 patients. During the first 24 h (H1–24), 48 (36.4%) patients were hyperkinetic, 55 (41.7%) were normokinetic, and 29 (22.0%) patients were hypokinetic. Thirteen patients had a secondary hypokinesia absent at H1–24 but present at H25–48 or H49–72, for an overall incidence of 42 (31.8%) during the first 3 days. Despite a limited feasibility (<50%), global LV longitudinal peak systolic strain was impaired in a majority (>70%) of the patients assessed, including all those with depressed LVEF, and declined early in patients whose LVEF secondarily deteriorated. Most contractility indices were inversely correlated with afterload indices. Hyperkinetic patients exhibited the worst reduction in afterload indices. Hospital mortality was significantly higher in patients with LV hyperkinesia than in their counterparts: 30 (62.5%) vs. 35 (41.7%), p = 0.02.

Conclusions

Speckle tracking-derived strain was reduced in the majority of patients with septic shock, revealing covert septic myocardial dysfunction, but had poor feasibility. We found an inverse correlation between most of the contractility and afterload indices. Precise evaluation of afterload is crucial for adequate interpretation of LV systolic function in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    Article  CAS  PubMed  Google Scholar 

  2. Aneman A, Vieillard-Baron A (2016) Cardiac dysfunction in sepsis. Intensive Care Med 42:2073–2076

    Article  PubMed  Google Scholar 

  3. Zaky A, Deem S, Bendjelid K, Treggiari MM (2014) Characterization of cardiac dysfunction in sepsis: an ongoing challenge. Shock 41:12–24

    Article  PubMed  Google Scholar 

  4. Jardin F, Brun-Ney D, Auvert B, Beauchet A, Bourdarias JP (1990) Sepsis-related cardiogenic shock. Crit Care Med 18:1055–1060

    Article  CAS  PubMed  Google Scholar 

  5. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23:351–369 (quiz 453–355)

    Article  PubMed  Google Scholar 

  6. Orde SR, Pulido JN, Masaki M, Gillespie S, Spoon JN, Kane GC, Oh JK (2014) Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 18:R149

    Article  PubMed  PubMed Central  Google Scholar 

  7. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  8. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706

    Article  PubMed  Google Scholar 

  9. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185–191

    Article  PubMed  Google Scholar 

  10. Aissaoui N, Guerot E, Combes A, Delouche A, Chastre J, Leprince P, Leger P, Diehl JL, Fagon JY, Diebold B (2012) Two-dimensional strain rate and Doppler tissue myocardial velocities: analysis by echocardiography of hemodynamic and functional changes of the failed left ventricle during different degrees of extracorporeal life support. J Am Soc Echocardiogr 25:632–640

    Article  PubMed  Google Scholar 

  11. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD, Singer M, Sepsis Definitions Task Force (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:775–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pulido JN, Afessa B, Masaki M, Yuasa T, Gillespie S, Herasevich V, Brown DR, Oh JK (2012) Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clin Proc 87:620–628

    Article  PubMed  PubMed Central  Google Scholar 

  13. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, Avidan A, Beeri R, Weissman C, Jaffe AS, Sprung CL (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 33:895–903

    Article  CAS  PubMed  Google Scholar 

  14. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R (2012) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  Google Scholar 

  15. Etchecopar-Chevreuil C, Francois B, Clavel M, Pichon N, Gastinne H, Vignon P (2008) Cardiac morphological and functional changes during early septic shock: a transesophageal echocardiographic study. Intensive Care Med 34:250–256

    Article  PubMed  Google Scholar 

  16. De Geer L, Engvall J, Oscarsson A (2015) Strain echocardiography in septic shock—a comparison with systolic and diastolic function parameters, cardiac biomarkers and outcome. Crit Care 19:122

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chang WT, Lee WH, Lee WT, Chen PS, Su YR, Liu PY, Liu YW, Tsai WC (2015) Left ventricular global longitudinal strain is independently associated with mortality in septic shock patients. Intensive Care Med 41:1791–1799

    Article  PubMed  Google Scholar 

  18. Barraud D, Faivre V, Damy T, Welschbillig S, Gayat E, Heymes C, Payen D, Shah AM, Mebazaa A (2007) Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide-treated rabbits: comparison with dobutamine and milrinone. Crit Care Med 35:1376–1382

    Article  PubMed  Google Scholar 

  19. Natanson C, Danner RL, Elin RJ, Hosseini JM, Peart KW, Banks SM, MacVittie TJ, Walker RI, Parrillo JE (1989) Role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J Clin Investig 83:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vignon P, Huang SJ (2015) Global longitudinal strain in septic cardiomyopathy: the hidden part of the iceberg? Intensive Care Med 41:1851–1853

    Article  PubMed  Google Scholar 

  21. Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74:172–183

    Article  CAS  PubMed  Google Scholar 

  22. Chauvet JL, El-Dash S, Delastre O, Bouffandeau B, Jusserand D, Michot JB, Bauer F, Maizel J, Slama M (2015) Early dynamic left intraventricular obstruction is associated with hypovolemia and high mortality in septic shock patients. Crit Care 19:262

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vieillard Baron A, Schmitt JM, Beauchet A, Augarde R, Prin S, Page B, Jardin F (2001) Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology 94:400–406

    Article  CAS  PubMed  Google Scholar 

  24. Mekontso Dessap A, Boissier F, Charron C, Begot E, Repesse X, Legras A, Brun-Buisson C, Vignon P, Vieillard-Baron A (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862–870

    Article  PubMed  Google Scholar 

  25. Paonessa JR, Brennan T, Pimentel M, Steinhaus D, Feng M, Celi LA (2015) Hyperdynamic left ventricular ejection fraction in the intensive care unit. Crit Care 19:288

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weng L, Liu YT, Du B, Zhou JF, Guo XX, Peng JM, Hu XY, Zhang SY, Fang Q, Zhu WL (2012) The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care 16:R71

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guarracino F, Ferro B, Morelli A, Bertini P, Baldassarri R, Pinsky MR (2014) Ventriculoarterial decoupling in human septic shock. Crit Care 18:R80

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kumar A, Schupp E, Bunnell E, Ali A, Milcarek B, Parrillo JE (2008) Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care 12:R35

    Article  PubMed  PubMed Central  Google Scholar 

  29. De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C, Vincent JL (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Mekontso Dessap.

Ethics declarations

Conflicts of interest

None.

Additional information

Take-home message

Our study supports the hypothesis of a widespread alteration of LV contractility during human septic shock and suggests that knowledge of afterload, a major prognostic factor, is crucial for adequate interpretation of LV systolic function in this setting.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 1773 kb)

Supplementary material 2 (DOC 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boissier, F., Razazi, K., Seemann, A. et al. Left ventricular systolic dysfunction during septic shock: the role of loading conditions. Intensive Care Med 43, 633–642 (2017). https://doi.org/10.1007/s00134-017-4698-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-017-4698-z

Keywords

Navigation