Skip to main content
Log in

Peri-operative interventions, but not inflammatory mediators, increase risk of acute kidney injury after cardiac surgery: a prospective cohort study

  • Pediatric Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Cardiopulmonary bypass (CPB)-related inflammatory response might be one mechanism by which cardiac surgery associated acute kidney injury (CS-AKI) occurs. Interventions that may attenuate inflammation, including glucocorticoids or phosphodiesterase inhibitors, could therefore have a role in its prevention. We aimed to determine the role of inflammatory mediators in CS-AKI in children and the efficacy of commonly used peri-operative interventions to reduce CS-AKI risk.

Methods

We prospectively studied 109 children undergoing heart surgery. Using regression modeling (adjusting for covariates), we (1) evaluated the association between inflammatory mediators [interleukin (IL)-6, IL-8, C-reactive protein, and tumor necrosis factor-α levels] and CS-AKI, and (2) evaluated risk/prevention factors for CS-AKI including glucocorticoid and milrinone administration. CS-AKI was defined based on pRIFLE methods.

Results

CS-AKI occurred in 68 % of children. No inflammatory mediator measured had an independent association with CS-AKI. Higher pre-operative glomerular filtration rate (GFR), sustained decrease in mean arterial pressure during CPB, post-operative single ventricle physiology, deep hypothermic circulatory arrest, and milrinone use at 24 h post-operatively were significant independent predictors of CS-AKI. Intra-operative steroid administration had no effect on the rate of CS-AKI.

Conclusions

Although inflammatory mediators are up-regulated following CPB, we found no association between levels of inflammatory cytokines and CS-AKI. CS-AKI has complex pathophysiology and the observation that milrinone was associated with increased AKI risk (and that higher GFR predicts more injury) suggests that mechanisms beyond inflammation play a significant role. Intra-operative administration of glucocorticoid does not appear to be an effective intervention for reducing the risk of CS-AKI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

CPB:

Cardiopulmonary bypass

CRP:

C-reactive protein

CRRT:

Continuous renal replacement therapy

CS-AKI:

Cardiac surgery associated AKI

DHCA:

Deep hypothermic circulatory arrest

eCCl:

Estimated creatinine clearance

ECMO:

Extracorporeal membrane oxygenation

eGFR:

Estimated glomerular filtration rate

GFR:

Glomerular filtration rate

IL-6:

Interleukin 6

IL-8:

Interleukin 8

IQR:

Interquartile range

MAP:

Mean arterial pressure

PD:

Peritoneal dialysis

POD:

Post-operative day

RACHS-1:

Risk Adjustment for Congenital Heart Surgery 1

SCr:

Serum creatinine

SD:

Standard deviation

sTNFR:

Soluble tumor necrosis factor receptor

SV:

Single ventricle

References

  1. Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71:1028–1035. doi:10.1038/sj.ki.5002231

    Article  PubMed  CAS  Google Scholar 

  2. Zappitelli M, Moffett BS, Hyder A, Goldstein SL (2011) Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre: a retrospective cohort study. Nephrol Dial Transpl 26:144–150. doi:10.1093/ndt/gfq375

    Article  Google Scholar 

  3. Plotz FB, Hulst HE, Twisk JW, Bokenkamp A, Markhorst DG, van Wijk JA (2005) Effect of acute renal failure on outcome in children with severe septic shock. Pediatr Nephrol 20:1177–1181. doi:10.1007/s00467-005-1946-1

    Article  PubMed  Google Scholar 

  4. Schneider J, Khemani R, Grushkin C, Bart R (2010) Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 38:933–939. doi:10.1097/CCM.0b013e3181cd12e1

    Article  PubMed  CAS  Google Scholar 

  5. Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR (2009) Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 53:961–973. doi:10.1053/j.ajkd.2008.11.034

    Article  PubMed  Google Scholar 

  6. Schmitt R, Coca S, Kanbay M, Tinetti ME, Cantley LG, Parikh CR (2008) Recovery of kidney function after acute kidney injury in the elderly: a systematic review and meta-analysis. Am J Kidney Dis 52:262–271. doi:10.1053/j.ajkd.2008.03.005

    Article  PubMed  Google Scholar 

  7. Casey LC (1993) Role of cytokines in the pathogenesis of cardiopulmonary-induced multisystem organ failure. Ann Thorac Surg 56:S92–S96. doi:10.1016/0003-4975(93)91143-B

    Article  PubMed  CAS  Google Scholar 

  8. Kalfin RE, Engelman RM, Rousou JA, Flack JE 3rd, Deaton DW, Kreutzer DL, Das DK (1993) Induction of interleukin-8 expression during cardiopulmonary bypass. Circulation 88:II401–II406

    PubMed  CAS  Google Scholar 

  9. Finn A, Naik S, Klein N, Levinsky RJ, Strobel S, Elliott M (1993) Interleukin-8 release and neutrophil degranulation after pediatric cardiopulmonary bypass. J Thorac Cardiovasc Surg 105:234–241

    PubMed  CAS  Google Scholar 

  10. Asimakopoulos G (2001) Systemic inflammation and cardiac surgery: an update. Perfusion 16:353–360. doi:10.1177/026765910101600505

    Article  PubMed  CAS  Google Scholar 

  11. Nishiki T, Kitada H, Okabe Y, Miura Y, Kurihara K, Kawanami S, Tanaka M (2011) Effect of milrinone on ischemia-reperfusion injury in the rat kidney. Transpl Proc 43:1489–1494. doi:10.1016/j.transproceed.2011.03.009

    Article  CAS  Google Scholar 

  12. Lanfear DE, Hasan R, Gupta RC et al (2009) Short term effects of milrinone on biomarkers of necrosis, apoptosis, and inflammation in patients with severe heart failure. J Transl Med 7:67. doi:10.1186/1479-5876-7-67

    Article  PubMed  Google Scholar 

  13. Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123:110–118. doi:10.1067/mtc.2002.119064

    Article  PubMed  Google Scholar 

  14. Wernovsky G, Wypij D, Jonas RA et al (1995) Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. A comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 92:2226–2235. doi:10.1161/01.CIR.92.8.2226

    Article  PubMed  CAS  Google Scholar 

  15. Aronen M, Leijala M, Meri S (1990) Value of C-reactive protein in reflecting the magnitude of complement activation in children undergoing open heart surgery. Intensive Care Med 16:128–132. doi:10.1007/BF02575308

    Article  PubMed  CAS  Google Scholar 

  16. Butler J, Parker D, Pillai R, Westaby S, Shale DJ, Rocker GM (1993) Effect of cardiopulmonary bypass on systemic release of neutrophil elastase and tumor necrosis factor. J Thorac Cardiovasc Surg 105:25–30

    PubMed  CAS  Google Scholar 

  17. Chew MS, Brandslund I, Brix-Christensen V et al (2001) Tissue injury and the inflammatory response to pediatric cardiac surgery with cardiopulmonary bypass: a descriptive study. Anesthesiology 94:745–753

    Article  PubMed  CAS  Google Scholar 

  18. el-Barbary M, Khabar KS (2002) Soluble tumor necrosis factor receptor p55 predicts cytokinemia and systemic inflammatory response after cardiopulmonary bypass. Crit Care Med 30:1712–1716

    Article  PubMed  CAS  Google Scholar 

  19. Hirai S, Sueda T, Orihashi K, Watari M, Okada K (2001) Kinetics of pro-inflammatory cytokines release in cardiac surgery with cardiopulmonary bypass. Jpn J Thorac Cardiovasc Surg 49:216–219. doi:10.1007/BF02913518

    Article  PubMed  CAS  Google Scholar 

  20. Gormley SM, McBride WT, Armstrong MA et al (2000) Plasma and urinary cytokine homeostasis and renal dysfunction during cardiac surgery. Anesthesiology 93:1210–1216. doi:10.1097/00000542-200011000-00013

    Article  PubMed  CAS  Google Scholar 

  21. Stenvinkel P, Ketteler M, Johnson RJ et al (2005) IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney Int 67:1216–1233. doi:10.1111/j.1523-1755.2005.00200.x

    Article  PubMed  CAS  Google Scholar 

  22. Diez-Ruiz A, Tilz GP, Zangerle R, Baier-Bitterlich G, Wachter H, Fuchs D (1995) Soluble receptors for tumour necrosis factor in clinical laboratory diagnosis. Eur J Haematol 54:1–8. doi:10.1111/j.1600-0609.1995.tb01618.x

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. doi:10.1681/ASN.2008030287

    Article  PubMed  Google Scholar 

  24. Alkandari O, Eddington KA, Hyder A et al (2011) Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care 15:R146. doi:10.1186/cc10269

    Article  PubMed  Google Scholar 

  25. Mickey RM, Greenland S (1989) The impact of confounder selection criteria on effect estimation. Am J Epidemiol 129:125–137

    PubMed  CAS  Google Scholar 

  26. Bursac Z, Gauss CH, Williams DK, Hosmer DW (2008) Purposeful selection of variables in logistic regression. Source Code Biol Med 3:17. doi:10.1186/1751-0473-3-17

    Article  PubMed  Google Scholar 

  27. Li S, Krawczeski CD, Zappitelli M et al (2011) Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med 39:1493–1499. doi:10.1097/CCM.0b013e31821201d3

    Article  PubMed  Google Scholar 

  28. Zabrocki LA, Brogan TV, Statler KD, Poss WB, Rollins MD, Bratton SL (2011) Extracorporeal membrane oxygenation for pediatric respiratory failure: survival and predictors of mortality. Crit Care Med 39:364–370. doi:10.1097/CCM.0b013e3181fb7b35

    Article  PubMed  Google Scholar 

  29. Skippen PW, Krahn GE (2005) Acute renal failure in children undergoing cardiopulmonary bypass. Crit Care Resusc 7:286–291

    PubMed  CAS  Google Scholar 

  30. Liu KD, Altmann C, Smits G, Krawczeski CD, Edelstein CL, Devarajan P, Faubel S (2009) Serum interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: a case-control study. Crit Care 13:R104. doi:10.1186/cc7940

    Article  PubMed  Google Scholar 

  31. Morgan CJ, Zappitelli M, Robertson CM, et al. (2012) Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr. doi:10.1016/j.jpeds.2012.06.054 (Epub ahead of print)

  32. Ho J, Lucy M, Krokhin O et al (2009) Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary bypass: a nested case-control study. Am J Kidney Dis 53:584–595. doi:10.1053/j.ajkd.2008.10.037

    Article  PubMed  CAS  Google Scholar 

  33. Dennen P, Altmann C, Kaufman J et al (2010) Urine interleukin-6 is an early biomarker of acute kidney injury in children undergoing cardiac surgery. Crit Care 14:R181. doi:10.1186/cc9289

    Article  PubMed  Google Scholar 

  34. Chiravuri SD, Riegger LQ, Christensen R, Butler RR, Malviya S, Tait AR, Voepel-Lewis T (2011) Factors associated with acute kidney injury or failure in children undergoing cardiopulmonary bypass: a case-controlled study. Paediatr Anaesth 21:880–886. doi:10.1111/j.1460-9592.2011.03532.x

    Article  PubMed  Google Scholar 

  35. Ricci Z, Picca S, Guzzo I, Ronco C (2011) Kidney diseases beyond nephrology: intensive care. Nephrol Dial Transpl 26:448–454. doi:10.1093/ndt/gfq800

    Article  Google Scholar 

  36. Zappitelli M, Krawczeski CD, Devarajan P et al (2011) Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney Int 80:655–662. doi:10.1038/ki.2011.123

    Article  PubMed  CAS  Google Scholar 

  37. Burlet A, Drukker A, Guignard JP (1999) Renal function in cyanotic congenital heart disease. Nephron 81:296–300. doi:10.1159/000045296

    Article  PubMed  CAS  Google Scholar 

  38. Ali ZA, Callaghan CJ, Lim E et al (2007) Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation 116:I98–I105. doi:10.1161/circulationaha.106.679167

    Article  PubMed  Google Scholar 

  39. Park KM, Chen A, Bonventre JV (2001) Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem 276:11870–11876. doi:10.1074/jbc.M007518200

    Article  PubMed  CAS  Google Scholar 

  40. Buchhorn R, Hammersen A, Bartmus D, Bursch J (2001) The pathogenesis of heart failure in infants with congenital heart disease. Cardiol Young 11:498–504. doi:10.1017/S1047951101000725

    Article  PubMed  CAS  Google Scholar 

  41. Redfors B, Sward K, Sellgren J, Ricksten SE (2009) Effects of mannitol alone and mannitol plus furosemide on renal oxygen consumption, blood flow and glomerular filtration after cardiac surgery. Intensive Care Med 35:115–122. doi:10.1007/s00134-008-1206-5

    Article  PubMed  CAS  Google Scholar 

  42. Antonelli M, Azoulay E, Bonten M et al (2010) Year in review in Intensive Care Medicine 2009: I. Pneumonia and infections, sepsis, outcome, acute renal failure and acid base, nutrition and glycaemic control. Intensive Care Med 36:196–209. doi:10.1007/s00134-009-1742-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Stollery Children’s Hospital Foundation. P. G. was supported by the Rhodes Trust, Alberta Innovates–Health Solutions and Canadian Institute of Health Research.

Conflicts of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Morgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, C.J., Gill, P.J., Lam, S. et al. Peri-operative interventions, but not inflammatory mediators, increase risk of acute kidney injury after cardiac surgery: a prospective cohort study. Intensive Care Med 39, 934–941 (2013). https://doi.org/10.1007/s00134-013-2849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-013-2849-4

Keywords

Navigation