Skip to main content
Log in

Orthopädische implantatassozierte Infektionen

Update zur Antibiotikatherapie

Orthopaedic implant-associated infections

Update of antimicrobial therapy

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Bei prothesen- und osteosynthesenassoziierten Infektionen adhärieren die Erreger als Biofilm auf dem Implantat. Dieser Biofilm ist nicht nur gegen die Phagozytose durch Granulozyten, sondern auch gegen die meisten Antibiotika resistent. Es kommt deshalb nie zu einer Spontanheilung und die antibiotische Therapie muss über mehrere Wochen verabreicht werden. Früher bestand die Ansicht, dass implantatassoziierte Infektionen nur durch die Entfernung des Fremdmaterials geheilt werden können. Heute ist bekannt, dass Biofilme von Staphylokokken mit Rifampicin und von gramnegativen Stäbchen mit Chinolonen eliminiert werden können. Dies gilt jedoch nur für Biofilme, die nicht länger als 3–4 Wochen auf dem Implantat adhärieren. Bisher existiert keine kontrollierte, vergleichende Studie zur korrekten Dauer der gesamten Antibiotikatherapie. Bisheriger Standard ist eine 3- (Hüftprothesen) bis 6-monatige (Knieprothesen) Therapie bei Patienten mit Débridement und Prothesenretention, einzeitigem Wechsel sowie zweizeitigem Wechsel mit kurzem Intervall (2–3 Wochen). Gemäß einer neueren Beobachtungsstudie sind jedoch bei Patienten mit Débridement und Prothesenretention auch kürzere Behandlungen von 2 beziehungsweise 3 Monaten wirksam. Für die Wahl der optimalen chirurgischen Behandlung steht ein Algorithmus zur Verfügung. Wichtig ist es, bereits initial die für den Patienten beste Intervention zu wählen, da der Erfolg der ersten Operation entscheidend für das funktionelle Endresultat ist.

Abstract

In infections related to prosthetic joints and internal fixation devices, microorganisms adhere as biofim on the surface of the implant. Biofilms are not only resistant to phagocytosis, but also to most antimicrobial agents. Therefore, spontaneous cure does never occur, and antibiotics have to be given for several months. According to traditional concepts, removal of all foreign material was considered as prerequisite for cure. Yet, during the last decades, it has been shown that staphylococcal biofilms can be eliminated by rifampin combination therapy, and Gram-negative biofilms by fluoroquinolones. However, reliable biofilm elimination is only possible, if the duration of infection does not exceed 3–4 weeks. Correct total duration of the antimicrobial therapy has never been tested in a controlled trial. Currently, treatment duration is 3 (hip prosthesis) and 6 (knee prosthesis) months in patients undergoing débridement with implant retention, one-stage exchange, and two-stage exchange with a short interval of 2–3 weeks. According to a recent observational trial, a treatment duration of 2 and 3 months, respectively, is equivalent to the longer duration in patients undergoing débridement and implant retention. The optimal surgical therapy should be chosen according to a rational algorithm. It is crucial choosing the optimal surgical intervention from the beginning, because the final functional success depends on the cure by the first attempt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Achermann Y, Eigenmann K, Ledergerber B et al (2013) Factors associated with rifampin resistance in staphylococcal periprosthetic joint infections (PJI): a matched case-control study. Infection 41:431–437

    Article  CAS  PubMed  Google Scholar 

  2. Baldoni D, Furustrand Tafin U, Aeppli S et al (2013) Activity of dalbavancin, alone and in combination with rifampicin, against meticillin-resistant Staphylococcus aureus in a foreign-body infection model. Int J Antimicrob Agents 42:220–225

    Article  CAS  PubMed  Google Scholar 

  3. Barberan J, Aguilar L, Carroquino G et al (2006) Conservative treatment of staphylococcal prosthetic joint infections in elderly patients. Am J Med 119:993.e997–e910

    Article  PubMed  Google Scholar 

  4. Bauer J, Siala W, Tulkens PM et al (2013) A combined pharmacodynamic quantitative and qualitative model reveals the potent activity of daptomycin and delafloxacin against Staphylococcus aureus biofilms. Antimicrob Agents Chemother 57:2726–2737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bernier SP, Lebeaux D, DeFrancesco AS et al (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9:e1003144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hoiby N, Bjarnsholt T, Moser C et al (2015) ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21(Suppl 1):S1–S25

    Article  PubMed  Google Scholar 

  7. John AK, Baldoni D, Haschke M et al (2009) Efficacy of daptomycin in implant-associated infection due to methicillin-resistant Staphylococcus aureus: importance of combination with rifampin. Antimicrob Agents Chemother 53:2719–2724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Landersdorfer CB, Bulitta JB, Kinzig M et al (2009) Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet 48:89–124

    Article  CAS  PubMed  Google Scholar 

  9. Muhlhofer HM, Gollwitzer H, Lenze F et al (2015) [Periprosthetic infections of the hip joint: clinical approach]. Orthopade 44:357–365

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen S, Robineau O, Titecat M et al (2015) Influence of daily dosage and frequency of administration of rifampicin-levofloxacin therapy on tolerance and effectiveness in 154 patients treated for prosthetic joint infections. Eur J Clin Microbiol Infect Dis 34(8):1675–1682

    Article  CAS  PubMed  Google Scholar 

  11. Osmon DR, Berbari EF, Berendt AR et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1–e25

    Article  PubMed  Google Scholar 

  12. Portillo ME, Salvado M, Alier A et al (2013) Prosthesis failure within 2 years of implantation is highly predictive of infection. Clin Orthop Relat Res 471:3672–3678

    Article  PubMed Central  PubMed  Google Scholar 

  13. Puhto AP, Puhto TSyrjala H (2012) Short-course antibiotics for prosthetic joint infections treated with prosthesis retention. Clin Microbiol Infect 18:1143–1148

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez-Pardo D, Pigrau C, Lora-Tamayo J et al (2014) Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Microbiol Infect 20:O911–O919

    Article  Google Scholar 

  15. Sendi P, Zimmerli W (2012) Antimicrobial treatment concepts for orthopaedic device-related infection. Clin Microbiol Infect 18:1176–1184

    Article  CAS  PubMed  Google Scholar 

  16. Sendi P, Banderet F, Graber P et al (2011) Clinical comparison between exogenous and haematogenous periprosthetic joint infections caused by Staphylococcus aureus. Clin Microbiol Infect 17:1098–1100

    Article  CAS  PubMed  Google Scholar 

  17. Sherrell JC, Fehring TK, Odum S et al (2011) The Chitranjan Ranawat Award: fate of two-stage reimplantation after failed irrigation and debridement for periprosthetic knee infection. Clin Orthop Relat Res 469:18–25

    Article  PubMed Central  PubMed  Google Scholar 

  18. Widmer AF, Frei R, Rajacic Z et al (1990) Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis 162:96–102

    Article  CAS  PubMed  Google Scholar 

  19. Widmer AF, Wiestner A, Frei R et al (1991) Killing of nongrowing and adherent Escherichia coli determines drug efficacy in device-related infections. Antimicrob Agents Chemother 35:741–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zimmerli W (2015) Bone and Joint Infections. From Microbiology to Diagnostics and Treatment, 1 Aufl. John Wiley & Sons Ltd, West Sussex

    Google Scholar 

  21. Zimmerli W, Sendi P (2011) Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol 33:295–306

    Article  CAS  PubMed  Google Scholar 

  22. Zimmerli W, Trampuz A, Ochsner PE (2004) Prosthetic-joint infections. N Engl J Med 351:1645–1654

    Article  CAS  PubMed  Google Scholar 

  23. Zimmerli W, Frei R, Widmer AF et al (1994) Microbiological tests to predict treatment outcome in experimental device-related infections due to Staphylococcus aureus. J Antimicrob Chemother 33:959–967

    Article  CAS  PubMed  Google Scholar 

  24. Zimmerli W, Widmer AF, Blatter M et al (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279:1537–1541

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zimmerli.

Ethics declarations

Interessenskonflikt

W. Zimmerli gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmerli, W. Orthopädische implantatassozierte Infektionen. Orthopäde 44, 961–966 (2015). https://doi.org/10.1007/s00132-015-3184-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-015-3184-y

Schlüsselwörter

Keywords

Navigation