Skip to main content
Log in

Möglichkeiten der biomechanischen Charakterisierung von Knorpelgewebe

Eine Standortbestimmung

Possibilities for the biomechanical characterization of cartilage

A brief update

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Die biomechanischen Funktionen des Gelenkknorpels quantitativ darzustellen, stellt eine besondere Herausforderung dar. Der Grund sind die einzigartigen lasttragenden, -verteilenden und tribologischen Eigenschaften, deren Ursprung in der Struktur und der biochemischen Zusammensetzung des Gewebes liegt. Im Laufe der letzten Jahrzehnte sind verschiedene Materialmodelle und Prüfverfahren publiziert worden, die in der einen oder anderen Weise von sich behaupten, diesem Anspruch zu genügen. Das Ziel dieses Beitrags ist es, eine Übersicht über die zugrunde liegenden Funktionsprinzipien der wichtigsten Materialmodelle und Prüfverfahren zu geben. Auf verständliche Weise sollen die Zusammenhänge zwischen den mathematischen Materialmodellen, den relevanten Prüfverfahren und den entsprechenden Methoden zur Bestimmung der assoziierten Materialparameter aufgezeigt werden. Da die praktische Anwendung dieser Methoden auch vom damit verbundenen Zeitaufwand abhängt, wird ein besonderes Augenmerk auf solche Ansätze gelegt, für die möglichst nur ein Prüfverfahren notwendig ist.

Abstract

The quantitative description of the biomechanical function of diarthrodial joint cartilage is a particularly challenging task due to the unique load bearing, load distribution and tribological properties of the tissue,which have their origin in the unique structure and biochemical composition. In the course of recent decades,different material models and testing methods have been published which claim to meet this challenge in one way or another. The goal of this paper is to provide an overview of the basic principles involved in the most important of these material models and testing methods. The relationship between the material models and the relevant testing methods will be illustrated in a comprehensible manner. As practical use of these methods is also associated with the amount of time required to perform them, particular attention will be paid to experimental approaches requiring only one test modality to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Notes

  1. Labor für Biomechanik und Biomaterialien (LBB) und Zentrale Forschungswerkstätten (ZFW) der Medizinischen Hochschule Hannover.

Literatur

  1. Abd Latif MJ, Jin Z, Wilcox RK (2012) Biomechanical characterisation of ovine spinal facet joint cartilage. J Biomech 45:1346–1352

    Article  Google Scholar 

  2. Anderson AE, Ellis BJ, Maas SA et al (2008) Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng 130:051008

    Article  PubMed  Google Scholar 

  3. Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg 64:88–94

    PubMed  CAS  Google Scholar 

  4. Ateshian G, Mow V (2005) Friction, lubrication, and wear of articular cartilage and diarthrodial joints. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics & mechano-biology. Lippincott Williams & Wilkins, Philadelphia, pp 447–494

  5. Ateshian GA, Warden WH, Kim JJ et al (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 30:1157–1164

    Article  PubMed  CAS  Google Scholar 

  6. Ateshian GA, Weiss JA (2010) Anisotropic hydraulic permeability under finite deformation. J Biomech Eng 132

  7. Brommer H, Laasanen MS, Brama PAJ et al (2006) In situ and ex vivo evaluation of an arthroscopic indentation instrument to estimate the health status of articular cartilage in the equine metacarpophalangeal joint. Vet Surg 35:259–266

    Article  PubMed  Google Scholar 

  8. Buckwalter JA, Mow VC, Ratcliffe A (1994) Restoration of Injured or Degenerated Articular Cartilage. J Am Acad Orthop Surg 2:192–201

    PubMed  Google Scholar 

  9. Buschmann MD, Soulhat J, Shirazi-Adl A et al (1997) Confined compression of articular cartilage: linearity in ramp and sinusoidal tests and the importance of interdigitation and incomplete confinement. J Biomech 31:171–178

    Article  Google Scholar 

  10. Cohen B, Lai WM, Mow VC (1998) A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120:491–496

    Article  PubMed  CAS  Google Scholar 

  11. DiSilvestro MR, Suh J-KF (2001) A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J Biomech 34:519–525

    Article  PubMed  CAS  Google Scholar 

  12. Duda GN, Kleemann RU, Bluecher U, Weiler A (2004) A new device to detect early cartilage degeneration. Am J Sports Med 32:693–698

    Article  PubMed  Google Scholar 

  13. Ehlers W, Markert B (2001) A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J Biomech Eng 123:418–424

    Article  PubMed  CAS  Google Scholar 

  14. Elmore SM, Sokoloff L, Norris G, Carmeci P (1963) Nature of „imperfect“ elasticity of articular cartilage. J Appl Physiol 18:393–396

    Google Scholar 

  15. Föhr P, Hautmann V, Prodinger P et al (2012) Design of a high-dynamic closed-loop controlled cartilage test system. Orthopade 41:820–826

    Article  PubMed  Google Scholar 

  16. Garon M, Cloutier L, Légaré A et al (2007) Reliability and correlation to human articular cartilage mechanical properties of a streaming potential based arthroscopic instrument. Trans ORS 32:629

    Google Scholar 

  17. Garon M, Légaré A, Guardo R et al (2002) Streaming potentials maps are spatially resolved indicators of amplitude, frequency and ionic strength dependant responses of articular cartilage to load. J Biomech 35:207–216

    Article  PubMed  CAS  Google Scholar 

  18. Hayes WC, Keer LM, Herrmann G, Mockros LF (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5:541–551

    Article  PubMed  CAS  Google Scholar 

  19. Hayes WC, Mockros LF (1971) Viscoelastic properties of human articular cartilage. J Appl Physiol 31:562–568

    PubMed  CAS  Google Scholar 

  20. Hoch DH, Grodzinsky AJ, Koob TJ (1983) Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res 1:4–12

    Article  PubMed  CAS  Google Scholar 

  21. Hofmann GO, Marticke J, Grossstück R et al (2010) Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 17:1–8

    Article  PubMed  Google Scholar 

  22. Hori RY, Mockros LF (1976) Indentation tests of human articular cartilage. J Biomech 9:259–268

    Article  PubMed  CAS  Google Scholar 

  23. Julkunen P, Wilson W, Jurvelin JS et al (2008) Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech 41:1978–1986

    Article  PubMed  Google Scholar 

  24. Jurvelin J, Kiviranta I, Tammi M, Helminen HJ (1986) Effect of physical exercise on indentation stiffness of articular cartilage in the canine knee. Int J Sports Med 7:106–110

    Article  PubMed  CAS  Google Scholar 

  25. Jurvelin JS, Arokoski JP, Hunziker EB, Helminen HJ (2000) Topographical variation of the elastic properties of articular cartilage in the canine knee. J Biomech 33:669–675

    Article  PubMed  CAS  Google Scholar 

  26. Jurvelin JS, Räsänen T, Kolmonen P, Lyyra T (1995) Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J Biomech 28:231–235

    Article  PubMed  CAS  Google Scholar 

  27. Keenan KE, Kourtis LC, Besier TF et al (2009) New resource for the computation of cartilage biphasic material properties with the interpolant response surface method. Comput Methods Biomech Biomed Engin 12:415–422

    Article  PubMed  Google Scholar 

  28. Kwan MK, Lai WM, Mow VC (1984) Fundamentals of fluid transport through cartilage in compression. Ann Biomed Eng 12:537–558

    Article  PubMed  CAS  Google Scholar 

  29. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–258

    Article  PubMed  CAS  Google Scholar 

  30. Légaré A, Garon M, Guardo R et al (2002) Detection and analysis of cartilage degeneration by spatially resolved streaming potentials. J Orthop Res 20:819–826

    Article  PubMed  Google Scholar 

  31. Liu F, Kozanek M, Hosseini A et al (2010) In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech 43:658–665

    Article  PubMed  Google Scholar 

  32. Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:011005

    Article  PubMed  Google Scholar 

  33. Mak AF, Lai WM, Mow VC (1987) Biphasic indentation of articular cartilage – I. Theoretical analysis. J Biomech 20:703–714

    Article  PubMed  CAS  Google Scholar 

  34. Mansour JM (2004) Biomechanics of cartilage. In: Oatis CA (ed) Kinesiology: the mechanics and pathomechanics of human movement. Lippincott Williams & Wilkins, Philadelphia, pp 66–79

  35. Maroudas A (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–809

    Article  PubMed  CAS  Google Scholar 

  36. Matek W, Muhs D, Wittel H et al (2001) Roloff/Matek: Maschinenelemente (Normung, Berechnung, Gestaltung). Vierweg & Sohn, Braunschweig

  37. McKee CT, Last JA, Russell P, Murphy CJ (2011) Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Eng 17:155–164

    Google Scholar 

  38. Mow V, Kuei S, Lai W, Armstrong C (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102:73

    Article  PubMed  CAS  Google Scholar 

  39. Mow VC, Gibbs MC, Lai WM et al (1989) Biphasic indentation of articular cartilage – II. A numerical algorithm and an experimental study. J Biomech 22:853–861

    Article  PubMed  CAS  Google Scholar 

  40. Mow VC, Gu WY, Chen FH (2005) Structure and function of articular cartilage and meniscus. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics & mechano-biology. Lippincott Williams & Wilkins, Philadelphia, pp 181–258

  41. Mow VC, Lai WM (1980) Recent developments in synovial joint biomechanics. Siam Rev 22:275–317

    Article  Google Scholar 

  42. Nelder JA, Mead R (1965) A simplex method for function minimization. Computer J 7:308–313

    Article  Google Scholar 

  43. Niederauer GG, Niederauer GM, Cullen LC Jr et al (2004) Correlation of cartilage stiffness to thickness and level of degeneration using a handheld indentation probe. Ann Biomed Eng 32:352–359

    Article  PubMed  Google Scholar 

  44. Prendergast PJ, Van Driel WD, Kuiper J-H (1996) A comparison of finite element codes for the solution of biphasic poroelastic problems. Proc Inst Mech Eng H 210:131–136

    PubMed  CAS  Google Scholar 

  45. Räsänen T, Messner K (1996) Regional variations of indentation stiffness and thickness of normal rabbit knee articular cartilage. J Biomed Mater Res 31:519–524

    Article  PubMed  Google Scholar 

  46. Saarakkala S, Julkunen P, Kiviranta P et al (2010) Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthritis Cartil 18:73–81

    Article  CAS  Google Scholar 

  47. Schwarz MLR, Schneider-Wald B, Krase A et al (2012) Tribologische Messungen am Gelenkknorpel. Orthopade 41:827–836

    Article  PubMed  CAS  Google Scholar 

  48. Setton LA, Elliott DM, Mow VC (1999) Altered mechanics of cartilage with osteoarthritis: Human osteoarthritis and an experimental model of joint degeneration. Osteoarthritis Cartil 7:2–14

    Article  CAS  Google Scholar 

  49. Spahn G, Klinger HM, Baums M et al (2010) Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study. Am J Sports Med 38:2516–2521

    Article  PubMed  Google Scholar 

  50. Stolz M, Raiteri R, Daniels AU et al (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283

    Article  PubMed  CAS  Google Scholar 

  51. Swann AC, Seedhom BB (1989) Improved techniques for measuring the indentation and thickness of articular cartilage. Proc Inst Mech Eng H 203:143–150

    Article  PubMed  CAS  Google Scholar 

  52. Wilson W, Huyghe JM, Van Donkelaar CC (2006) A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation. Osteoarthritis Cartil 14:554–560

    Article  CAS  Google Scholar 

  53. Wu JZ, Herzog W, Epstein M (1998) Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J Biomech 31:165–169

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Diese Arbeit wurde von dem Bundesministerium für Bildung und Forschung unterstützet (BMBF, FKZ: 03155778 „QuReGe – Funktionelle Qualitätssicherung von Regenerativen Gewebeersatzmaterialien für Knorpel und Meniskus“.

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hurschler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurschler, C., Abedian, R. Möglichkeiten der biomechanischen Charakterisierung von Knorpelgewebe. Orthopäde 42, 232–241 (2013). https://doi.org/10.1007/s00132-013-2074-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-013-2074-4

Schlüsselwörter

Keywords

Navigation