Skip to main content
Log in

Zukünftige Entwicklung der gynäkologischen Onkologie

Blick auf die Forschung

Future developments in gynecological oncology

A view of the research

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Seit der Veröffentlichung der Sequenz des menschlichen Genoms vor etwas mehr als 10 Jahren sind einige Technologien entwickelt worden, die eine Fülle an Daten zur genetischen Variabilität, zu Unterschieden in Genexpression, Epigenetik und anderen Regulationsmechanismen des Genoms generiert haben und in noch größerer Fülle generieren werden. Dies geht mit Anforderungen an klinische Studien einher, um diese an die neuen Technologien anzupassen. In der Gynäkologie und Geburtshilfe gibt es bereits einige Ergebnisse, die Einblicke in diesen sich noch entwickelnden Bereich der Wissenschaft gewähren. Diese und künftige Ansprüche an die wissenschaftliche Gemeinschaft werden im vorliegenden Beitrag dargestellt.

Abstract

Since the publication of the reference sequence of the human genome more than 10 years ago a variety of technologies have been developed that generate an abundance of genetic, epigenetic, gene expression and gene regulation data on a genome-wide scale. The generation of this data has had a strong influence on the methodology and design of studies and the education of scientists who want to utilize this data for the clinical practice. This article gives an overview of the current developments and the challenges that have to be addressed over the next years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945. DOI 10.1038/nature03001

    Article  Google Scholar 

  2. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. DOI 10.1038/35057062

    Article  PubMed  CAS  Google Scholar 

  3. Harbeck N, Salem M, Nitz U et al (2010) Personalized treatment of early-stage breast cancer: present concepts and future directions. Cancer Treat Rev 36:584–594. DOI 10.1016/j.ctrv.2010.04.007

    Article  PubMed  Google Scholar 

  4. Liedtke C, Wolf MK, Kiesel L (2010) New concepts for targeted systemic therapy in breast cancer. Geburtsh Frauenheilk 70:625–633. DOI 10.1055/s-0030-1250182

    Article  Google Scholar 

  5. Altshuler DM, Gibbs RA, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58. DOI 10.1038/nature09298

    Article  PubMed  CAS  Google Scholar 

  6. The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073. DOI10.1038/nature09534

    Article  Google Scholar 

  7. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615. DOI 10.1038/nature10166

    Article  Google Scholar 

  8. Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399. DOI 10.1038/nature10933

    PubMed  CAS  Google Scholar 

  9. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352. DOI 10.1038/nature10983

    PubMed  CAS  Google Scholar 

  10. Ellis MJ, Ding L, Shen D et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:353–360. DOI 10.1038/nature11143

    PubMed  CAS  Google Scholar 

  11. Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404. DOI 10.1038/nature11017

    PubMed  CAS  Google Scholar 

  12. Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409. DOI 10.1038/nature11154

    Article  PubMed  CAS  Google Scholar 

  13. Han SJ, Hawkins SM, Begum K et al (2012) A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat Med. DOI 10.1038/nm.2826

  14. Painter JN, Anderson CA, Nyholt DR et al (2011) Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet 43:51–54. DOI 10.1038/ng.731

    Article  PubMed  CAS  Google Scholar 

  15. Uno S, Zembutsu H, Hirasawa A et al (2010) A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet 42:707–710. DOI 10.1038/ng.612

    Article  PubMed  CAS  Google Scholar 

  16. Norwegian Institute of Public Health (2012) What is the norwegian mother and child cohort study? http://www.fhi.no/eway/default.aspx?pid=238&trg=MainArea_5811&MainArea_5811=5903:0:15,4329:1:0:0:::0:0. Zugegriffen: 01. Juli 2012

  17. Hunt KJ, Schuller KL (2007) The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North Am 34:173–199, vii. DOI 10.1016/j.ogc.2007.03.002

    Article  PubMed  Google Scholar 

  18. World Health Organization (1988) Geographic variation in the incidence of hypertension in pregnancy. World Health Organization International Collaborative Study of Hypertensive Disorders of Pregnancy. Am J Obstet Gynecol 158:80–83

    Google Scholar 

  19. Wu CS, Nohr EA, Bech BH et al (2009) Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol 201:269 e261–269 e210. DOI 10.1016/j.ajog.2009.06.060

    Article  PubMed  Google Scholar 

  20. Stolk L, Perry JR, Chasman DI et al (2012) Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet 44:260–268. DOI 10.1038/ng.1051

    Article  PubMed  CAS  Google Scholar 

  21. Fasching PA, Vetter M (2012) Translationale Medizin und klinische Umsetzung. In: Untch M, Thomssen C, Costa SD (Hrsg) Colloqium Senologie 2012. Agileum, München

  22. Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414. DOI 10.1038/ng.569

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.A. Fasching.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasching, P. Zukünftige Entwicklung der gynäkologischen Onkologie. Gynäkologe 45, 678–683 (2012). https://doi.org/10.1007/s00129-012-2963-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-012-2963-3

Schlüsselwörter

Keywords

Navigation