Skip to main content

Advertisement

Log in

Comparative Studies on the Toxicokinetics of Benzo[a]pyrene in Pinctada martensii and Perna viridis

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Research on the kinetics of Benzo[a]pyrene (B[a]P) bioaccumulation in the clam Pinctada martensii and mussel Perna viridis showed that the initial rate of uptake was directly related to the PAH concentrations in the ambient environment. The uptake and depuration rate constants were different at the four B[a]P exposure levels, which indicated that the toxicokinetic rate constants mainly depended on the exposure levels of pollutants to the environment. In addition, the uptake rate constants of B[a]P were higher than the depuration rate constants in the entire experiment. The comparison demonstrated that mussels release B[a]P more rapidly than clams. The bioconcentration factors (BCFs) of B[a]P varied from 3335 to 12892 in the clam and 2373–6235 in the mussel. These findings on the bioaccumulation kinetics for petroleum hydrocarbons, in association with the critical body residue, will be valuable when choosing sensitive organisms to assess the potential ecotoxicological risk to the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Binková B, Šrám RJ (2004) The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts. Mutat Res Fund Mol M 547:109–121

    Article  Google Scholar 

  • Carrasco-Navarro V, Jæger I et al (2015) Bioconcentration, biotransformation and elimination of pyrene in the arctic crustacean Gammarus setosus (Amphipoda) at two temperatures. Mar Environ Res 110:101–109

    Article  CAS  Google Scholar 

  • Chapman PM (1997) Is bioaccumulation useful for predicting impacts. Mar Pollut Bull 34:282–283

    Article  CAS  Google Scholar 

  • Chong K, Wang W-X (2001) Comparative studies on the biokinetics of Cd, Cr, and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environ Pollut 115:107–121

    Article  CAS  Google Scholar 

  • Cui L, Ge J et al (2015) Concentrations, bioaccumulation, and human health risk assessment of organochlorine pesticides and heavy metals in edible fish from Wuhan, China. Enviro Sci Pollut R 22:15866–15879

    Article  CAS  Google Scholar 

  • Driscoll SK, McElroy AE (1996) Bioaccumulation and metabolism of benzo [a] pyrene in three species of polychaete worms. Environ Toxicol Chem 15:1401–1410

    Article  CAS  Google Scholar 

  • El-Amrani S, Pena-Abaurrea M et al (2012) Bioconcentration of pesticides in zebrafish eleutheroembryos (Danio rerio). Sci Total Environ 425:184–190

    Article  CAS  Google Scholar 

  • El-Amrani S, Sanz-Landaluze J et al (2013) Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in zebrafish eleutheroembryos as a model for the evaluation of PAH bioconcentration. Talanta 104:67–74

    Article  CAS  Google Scholar 

  • Fathallah S, Medhioub MN et al (2012) Photo-induced toxicity of four polycyclic aromatic hydrocarbons (PAHs) to embryos and larvae of the carpet shell clam Ruditapes decussatus. Bull Environ Contam Toxicol 88:1001–1008

    Article  CAS  Google Scholar 

  • Feijtel T, Kloepper-Sams P et al (1997) Integration of bioaccumulation in an environmental risk assessment. Chemosphere 34:2337–2350

    Article  CAS  Google Scholar 

  • Hardy R, Mackie PR et al (1974) Discrimination in the assimilation of n-alkanes in fish. Nature 252:577–578

    Article  CAS  Google Scholar 

  • Jensen LK, Honkanen JO et al (2012) Bioaccumulation of phenanthrene and benzo [a] pyrene in Calanus finmarchicus. Ecotoxicol Environ Saf 78:225–231

    Article  CAS  Google Scholar 

  • Leversee G, Giesy J et al (1982) Kinetics and biotransformation of benzo (a) pyrene in Chironomus riparius. Arch Environ Contam Toxicol 11:25–31

    Article  CAS  Google Scholar 

  • Li P, Cao J et al (2015) Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China. Mar Pollut Bull 93:53–60

    Article  CAS  Google Scholar 

  • Livingstone DR (1991) Organic xenobiotic metabolism in marine invertebrates. In: Advances in comparative and environmental physiology. Springer, New York, pp 45–185

    Chapter  Google Scholar 

  • Luellen DR, Shea D (2002) Calibration and field verification of semipermeable membrane devices for measuring polycyclic aromatic hydrocarbons in water. Environ Sci Technol 36:1791–1797

    Article  CAS  Google Scholar 

  • Mackay D, Fraser A (2000) Bioaccumulation of persistent organic chemicals: mechanisms and models. Environ Pollut 110:375–391

    Article  CAS  Google Scholar 

  • OECD (1996) Test no. 305: bioconcentration: flow-through fish test. organisation for economic cooperation and development, Paris

  • Quaranta A, Bellantuono V et al (2009) Why amphibians are more sensitive than mammals to xenobiotics. PLoS One 4:e7699

    Article  Google Scholar 

  • Reynaud S, Worms IA et al (2012) Toxicokinetic of benzo [a] pyrene and fipronil in female green frogs (Pelophylax kl. esculentus). Environ Pollut 161:206–214

    Article  CAS  Google Scholar 

  • Richter S, Nagel R (2007) Bioconcentration, biomagnification and metabolism of 14C-terbutryn and 14C-benzo [a] pyrene in Gammarus fossarum and Asellus aquaticus. Chemosphere 66:603–610

    Article  CAS  Google Scholar 

  • Santacroce MP, Lai O et al (2005) L’inchiesta: the inquiry INQUINANTI NEL PIATTO? PAHs and seafood. La ricerca scientifica Sci Res

  • Short JW, Heintz RA (1997) Identification of Exxon Valdez oil in sediments and tissues from Prince William Sound and the Northwestern Gulf of Alaska based on a PAH weathering model. Environ Sci Technol 31:2375–2384

    Article  CAS  Google Scholar 

  • Spacie A, Landrum PF et al (1983) Uptake, depuration, and biotransformation of anthracene and benzo [a] pyrene in bluegill sunfish. Ecotoxicol Environ Saf 7:330–341

    Article  CAS  Google Scholar 

  • Wang L, Pan L et al (2011) Biomarkers and bioaccumulation of clam Ruditapes philippinarum in response to combined cadmium and benzo [α] pyrene exposure. Food Chem Toxicol 49:3407–3417

    Article  CAS  Google Scholar 

  • Whittle K, Mackie P et al (1977) The alkanes of marine organisms from the United Kingdom and surrounding waters. Rapports et Procès-Verbaux des Réunions du Conseil Permanent International pour l’Exploration de la Mer 171:72–78

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (31160126).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Diao or Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cui, L., Cheng, H. et al. Comparative Studies on the Toxicokinetics of Benzo[a]pyrene in Pinctada martensii and Perna viridis . Bull Environ Contam Toxicol 98, 649–655 (2017). https://doi.org/10.1007/s00128-016-2015-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-2015-0

Keywords

Navigation